Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
cb2a599d
Commit
cb2a599d
authored
Oct 06, 2018
by
Lianmin Zheng
Committed by
Tianqi Chen
Oct 06, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[RELAY] Add softmax (#1841)
parent
b313c021
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
88 additions
and
0 deletions
+88
-0
docs/langref/relay_op.rst
+1
-0
include/tvm/relay/attrs/nn.h
+10
-0
python/tvm/relay/op/nn/nn.py
+20
-0
src/relay/op/nn/convolution.cc
+0
-0
src/relay/op/nn/nn.cc
+43
-0
tests/python/relay/test_op_level1.py
+14
-0
No files found.
docs/langref/relay_op.rst
View file @
cb2a599d
...
...
@@ -28,6 +28,7 @@ This level enables fully connected multi-layer perceptron.
tvm.relay.sigmoid
tvm.relay.add
tvm.relay.expand_dims
tvm.relay.nn.softmax
**Level 2: Convolutions**
...
...
include/tvm/relay/attrs/nn.h
View file @
cb2a599d
...
...
@@ -67,6 +67,16 @@ struct ConvAttrs : public tvm::AttrsNode<ConvAttrs> {
}
};
/*! \brief Attributes used in softmax operators */
struct
SoftmaxAttrs
:
public
tvm
::
AttrsNode
<
SoftmaxAttrs
>
{
int
axis
;
TVM_DECLARE_ATTRS
(
SoftmaxAttrs
,
"relay.attrs.SoftmaxAttrs"
)
{
TVM_ATTR_FIELD
(
axis
).
set_default
(
1
)
.
describe
(
"The axis to sum over when computing softmax."
);
}
};
}
// namespace relay
}
// namespace tvm
#endif // TVM_RELAY_ATTRS_NN_H_
python/tvm/relay/op/nn/nn.py
View file @
cb2a599d
...
...
@@ -86,3 +86,23 @@ def conv2d(data,
return
_make
.
conv2d
(
data
,
weight
,
strides
,
padding
,
dilation
,
groups
,
channels
,
kernel_size
,
data_layout
,
weight_layout
,
out_layout
,
out_dtype
)
def
softmax
(
data
,
axis
):
r"""Computes softmax.
.. math:: \text{softmax}(x)_i = \frac{exp(x_i)}{\sum_j exp(x_j)}
.. note::
This operator can be optimized away for inference.
Parameters
----------
data: relay.Expr
The input data to the operator.
axis: int
The axis to sum over when computing softmax
"""
return
_make
.
softmax
(
data
,
axis
)
src/relay/op/nn/convolution.cc
View file @
cb2a599d
src/relay/op/nn/nn.cc
0 → 100644
View file @
cb2a599d
/*!
* Copyright (c) 2018 by Contributors
* \file nn.cc
* \brief Property def of nn operators.
*/
#include <tvm/relay/op.h>
#include <tvm/relay/attrs/nn.h>
#include "../type_relations.h"
namespace
tvm
{
namespace
relay
{
TVM_REGISTER_API
(
"relay.op.nn._make.softmax"
)
.
set_body
([](
const
TVMArgs
&
args
,
TVMRetValue
*
rv
)
{
auto
make_func
=
[](
Expr
data
,
int
axis
)
{
auto
attrs
=
make_node
<
SoftmaxAttrs
>
();
attrs
->
axis
=
axis
;
static
const
Op
&
op
=
Op
::
Get
(
"nn.softmax"
);
return
CallNode
::
make
(
op
,
{
data
},
Attrs
(
attrs
),
{});
};
runtime
::
detail
::
unpack_call
<
Expr
,
2
>
(
make_func
,
args
,
rv
);
});
RELAY_REGISTER_OP
(
"nn.softmax"
)
.
describe
(
R"code(Softmax layer.
.. math:: \text{softmax}(x)_i = \frac{exp(x_i)}{\sum_j exp(x_j)}
.. note::
This operator can be optimized away for inference.
- **data**: The input data
)code"
TVM_ADD_FILELINE
)
.
set_num_inputs
(
1
)
.
add_argument
(
"data"
,
"Tensor"
,
"The input tensor."
)
.
set_support_level
(
1
)
.
add_type_rel
(
"Identity"
,
IdentityRel
);
}
// namespace relay
}
// namespace tvm
tests/python/relay/test_op_level1.py
View file @
cb2a599d
...
...
@@ -16,6 +16,19 @@ def test_expand_dims_infer_type():
(
n
,
t
,
1
,
100
),
"float32"
)
def
test_softmax
():
ib
=
relay
.
ir_builder
.
IRBuilder
()
n
,
d
=
tvm
.
var
(
"n"
),
tvm
.
var
(
"d"
)
x
=
ib
.
param
(
"x"
,
relay
.
ty
.
TensorType
((
n
,
d
),
"float32"
))
with
ib
.
function
(
x
)
as
func
:
ib
.
ret
(
relay
.
nn
.
softmax
(
x
,
axis
=
1
))
ib
.
ret
(
func
)
func
=
relay
.
ir_pass
.
infer_type
(
ib
.
env
,
func
.
to_func
())
ftype
=
func
.
checked_type
()
assert
ftype
.
ret_type
==
relay
.
ty
.
TensorType
((
n
,
d
),
"float32"
)
def
test_unary_op
():
for
op
in
[
relay
.
exp
,
relay
.
log
,
...
...
@@ -34,3 +47,4 @@ def test_unary_op():
if
__name__
==
"__main__"
:
test_expand_dims_infer_type
()
test_unary_op
()
test_softmax
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment