Unverified Commit c66d4027 by Tianqi Chen Committed by GitHub

[DOCS] Update main website to tvm.apache.org (#4429)

* [DOCS] Update main website to tvm.apache.org

* Update jvm pom repo loc

* Change the org to asf

* Update ci addr to new one
parent e35ecae8
......@@ -15,14 +15,14 @@
<!--- specific language governing permissions and limitations -->
<!--- under the License. -->
<img src=https://raw.githubusercontent.com/tqchen/tvm.ai/master/images/logo/tvm-logo-small.png width=128/> Open Deep Learning Compiler Stack
<img src=https://raw.githubusercontent.com/apache/incubator-tvm-site/master/images/logo/tvm-logo-small.png width=128/> Open Deep Learning Compiler Stack
==============================================
[Documentation](https://docs.tvm.ai) |
[Contributors](CONTRIBUTORS.md) |
[Community](https://tvm.ai/community.html) |
[Community](https://tvm.apache.org/community) |
[Release Notes](NEWS.md)
[![Build Status](http://ci.tvm.ai:8080/buildStatus/icon?job=tvm/master)](http://ci.tvm.ai:8080/job/tvm/job/master/)
[![Build Status](https://ci.tvm.ai/buildStatus/icon?job=tvm/master)](https://ci.tvm.ai/job/tvm/job/master/)
[![Azure Pipeline](https://dev.azure.com/tvmai/tvm/_apis/build/status/windows_mac_build?branchName=master)](https://dev.azure.com/tvmai/tvm/_build/latest?definitionId=2&branchName=master)
Apache TVM (incubating) is a compiler stack for deep learning systems. It is designed to close the gap between the
......
......@@ -49,5 +49,5 @@ Literature
- Read the VTA `release blog post`_.
- Read the VTA tech report: `An Open Hardware Software Stack for Deep Learning`_.
.. _release blog post: https://tvm.ai/2018/07/12/vta-release-announcement.html
.. _release blog post: https://tvm.apache.org/2018/07/12/vta-release-announcement
.. _An Open Hardware Software Stack for Deep Learning: https://arxiv.org/abs/1807.04188
\ No newline at end of file
......@@ -10,8 +10,8 @@
<url>https://github.com/apache/incubator-tvm/tree/master/jvm</url>
<description>TVM4J Package</description>
<organization>
<name>Distributed (Deep) Machine Learning Community</name>
<url>http://dmlc.ml</url>
<name>Apache Software Foundation</name>
<url>https://apache.org</url>
</organization>
<licenses>
<license>
......@@ -20,8 +20,8 @@
</license>
</licenses>
<scm>
<connection>scm:git:git@github.com:dmlc/tvm.git</connection>
<developerConnection>scm:git:git@github.com:dmlc/tvm.git</developerConnection>
<connection>scm:git:git@github.com:apache/incubator-tvm.git</connection>
<developerConnection>scm:git:git@github.com:apache/incubator-tvm.git</developerConnection>
<url>https://github.com/apache/incubator-tvm</url>
</scm>
......
......@@ -60,7 +60,7 @@ from tvm import autotvm
# There are plenty of useful schedule primitives in tvm. You can also find
# some tutorials that describe them in more details, such as
# (1). :ref:`opt-conv-gpu`
# (2). `Optimizing DepthwiseConv on NVIDIA GPU <https://tvm.ai/2017/08/22/Optimize-Deep-Learning-GPU-Operators-with-TVM-A-Depthwise-Convolution-Example.html>`_
# (2). `Optimizing DepthwiseConv on NVIDIA GPU <https://tvm.apache.org/2017/08/22/Optimize-Deep-Learning-GPU-Operators-with-TVM-A-Depthwise-Convolution-Example>`_
#
# However, their implementations are manually tuned for some special input
# shapes. In this section, we build a large enough space to cover
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment