Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
c1008ec4
Commit
c1008ec4
authored
Nov 06, 2017
by
Yuwei Hu
Committed by
Tianqi Chen
Nov 06, 2017
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TOPI] fix weight layout in conv2d_transpose (#616)
parent
8214d6ca
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
16 additions
and
8 deletions
+16
-8
topi/python/topi/nn/conv2d_transpose.py
+3
-3
topi/python/topi/testing/conv2d_transpose_nchw_python.py
+12
-4
topi/tests/python/test_topi_conv2d_transpose_nchw.py
+1
-1
No files found.
topi/python/topi/nn/conv2d_transpose.py
View file @
c1008ec4
...
@@ -18,7 +18,7 @@ def conv2d_transpose_nchw(Input, Filter, strides, padding):
...
@@ -18,7 +18,7 @@ def conv2d_transpose_nchw(Input, Filter, strides, padding):
4-D with shape [batch, in_channel, in_height, in_width]
4-D with shape [batch, in_channel, in_height, in_width]
Filter : tvm.Tensor
Filter : tvm.Tensor
4-D with shape [
num_filter, in_channel
, filter_height, filter_width]
4-D with shape [
in_channel, num_filter
, filter_height, filter_width]
strides : tuple of two ints
strides : tuple of two ints
The spatial stride along height and width
The spatial stride along height and width
...
@@ -32,7 +32,7 @@ def conv2d_transpose_nchw(Input, Filter, strides, padding):
...
@@ -32,7 +32,7 @@ def conv2d_transpose_nchw(Input, Filter, strides, padding):
4-D with shape [batch, out_channel, out_height, out_width]
4-D with shape [batch, out_channel, out_height, out_width]
"""
"""
batch
,
in_c
,
in_h
,
in_w
=
Input
.
shape
batch
,
in_c
,
in_h
,
in_w
=
Input
.
shape
out_c
,
_
,
filter_h
,
filter_w
=
Filter
.
shape
_
,
out_c
,
filter_h
,
filter_w
=
Filter
.
shape
stride_h
,
stride_w
=
strides
stride_h
,
stride_w
=
strides
# dilate stage
# dilate stage
DilatedInput
=
dilate
(
Input
,
[
1
,
1
,
stride_h
,
stride_w
],
name
=
'DilatedInput'
)
DilatedInput
=
dilate
(
Input
,
[
1
,
1
,
stride_h
,
stride_w
],
name
=
'DilatedInput'
)
...
@@ -57,7 +57,7 @@ def conv2d_transpose_nchw(Input, Filter, strides, padding):
...
@@ -57,7 +57,7 @@ def conv2d_transpose_nchw(Input, Filter, strides, padding):
Output
=
tvm
.
compute
(
Output
=
tvm
.
compute
(
(
batch
,
out_c
,
out_h
,
out_w
),
(
batch
,
out_c
,
out_h
,
out_w
),
lambda
b
,
c
,
h
,
w
:
tvm
.
sum
(
lambda
b
,
c
,
h
,
w
:
tvm
.
sum
(
PaddedInput
[
b
,
dc
,
h
+
dh
,
w
+
dw
]
*
Filter
[
c
,
d
c
,
filter_h
-
1
-
dh
,
filter_w
-
1
-
dw
],
PaddedInput
[
b
,
dc
,
h
+
dh
,
w
+
dw
]
*
Filter
[
dc
,
c
,
filter_h
-
1
-
dh
,
filter_w
-
1
-
dw
],
axis
=
[
dc
,
dh
,
dw
]),
tag
=
"conv2d_transpose_nchw"
)
axis
=
[
dc
,
dh
,
dw
]),
tag
=
"conv2d_transpose_nchw"
)
return
Output
return
Output
topi/python/topi/testing/conv2d_transpose_nchw_python.py
View file @
c1008ec4
# pylint: disable=unused-variable
# pylint: disable=unused-variable
"""Transposed convolution in python"""
"""Transposed convolution in python"""
import
numpy
as
np
import
numpy
as
np
import
scipy
import
topi
import
topi
from
topi.nn.util
import
get_pad_tuple
from
topi.nn.util
import
get_pad_tuple
...
@@ -14,7 +15,7 @@ def conv2d_transpose_nchw_python(a_np, w_np, stride, padding):
...
@@ -14,7 +15,7 @@ def conv2d_transpose_nchw_python(a_np, w_np, stride, padding):
4-D with shape [batch, in_channel, in_height, in_width]
4-D with shape [batch, in_channel, in_height, in_width]
w_np : numpy.ndarray
w_np : numpy.ndarray
4-D with shape [
num_filter, in_channel
, filter_height, filter_width]
4-D with shape [
in_channel, num_filter
, filter_height, filter_width]
stride : int or a list/tuple of two ints
stride : int or a list/tuple of two ints
Stride size, or [stride_height, stride_width]
Stride size, or [stride_height, stride_width]
...
@@ -28,7 +29,7 @@ def conv2d_transpose_nchw_python(a_np, w_np, stride, padding):
...
@@ -28,7 +29,7 @@ def conv2d_transpose_nchw_python(a_np, w_np, stride, padding):
4-D with shape [batch, out_channel, out_height, out_width]
4-D with shape [batch, out_channel, out_height, out_width]
"""
"""
batch
,
in_c
,
in_h
,
in_w
=
a_np
.
shape
batch
,
in_c
,
in_h
,
in_w
=
a_np
.
shape
out_c
,
_
,
filter_h
,
filter_w
=
w_np
.
shape
_
,
out_c
,
filter_h
,
filter_w
=
w_np
.
shape
if
isinstance
(
stride
,
int
):
if
isinstance
(
stride
,
int
):
stride_h
=
stride_w
=
stride
stride_h
=
stride_w
=
stride
else
:
else
:
...
@@ -46,6 +47,13 @@ def conv2d_transpose_nchw_python(a_np, w_np, stride, padding):
...
@@ -46,6 +47,13 @@ def conv2d_transpose_nchw_python(a_np, w_np, stride, padding):
padded_a_np
[:,
:,
bpad_top
:
dilated_a_np
.
shape
[
2
]
+
bpad_top
,
\
padded_a_np
[:,
:,
bpad_top
:
dilated_a_np
.
shape
[
2
]
+
bpad_top
,
\
bpad_left
:
dilated_a_np
.
shape
[
3
]
+
bpad_left
]
=
dilated_a_np
bpad_left
:
dilated_a_np
.
shape
[
3
]
+
bpad_left
]
=
dilated_a_np
# convolution stage
# convolution stage
rotated_w_np
=
np
.
rot90
(
w_np
,
k
=
2
,
axes
=
(
2
,
3
))
out_h
=
(
in_h
-
1
)
*
stride_h
-
fpad_top
-
fpad_bottom
+
filter_h
b_np
=
topi
.
testing
.
conv2d_nchw_python
(
padded_a_np
,
rotated_w_np
,
stride
=
1
,
padding
=
'VALID'
)
out_w
=
(
in_w
-
1
)
*
stride_w
-
fpad_left
-
fpad_right
+
filter_w
b_np
=
np
.
zeros
((
batch
,
out_c
,
out_h
,
out_w
))
for
n
in
range
(
batch
):
for
f
in
range
(
out_c
):
for
c
in
range
(
in_c
):
out
=
scipy
.
signal
.
convolve2d
(
padded_a_np
[
n
,
c
],
w_np
[
c
,
f
],
mode
=
'valid'
)
b_np
[
n
,
f
]
+=
out
return
b_np
return
b_np
topi/tests/python/test_topi_conv2d_transpose_nchw.py
View file @
c1008ec4
...
@@ -10,7 +10,7 @@ def verify_conv2d_transpose_nchw(batch, in_channel, in_size, num_filter, kernel,
...
@@ -10,7 +10,7 @@ def verify_conv2d_transpose_nchw(batch, in_channel, in_size, num_filter, kernel,
in_height
=
in_width
=
in_size
in_height
=
in_width
=
in_size
A
=
tvm
.
placeholder
((
batch
,
in_channel
,
in_height
,
in_width
),
name
=
'A'
)
A
=
tvm
.
placeholder
((
batch
,
in_channel
,
in_height
,
in_width
),
name
=
'A'
)
W
=
tvm
.
placeholder
((
num_filter
,
in_channel
,
kernel
,
kernel
),
name
=
'W'
)
W
=
tvm
.
placeholder
((
in_channel
,
num_filter
,
kernel
,
kernel
),
name
=
'W'
)
B
=
topi
.
nn
.
conv2d_transpose_nchw
(
A
,
W
,
[
stride
,
stride
],
padding
)
B
=
topi
.
nn
.
conv2d_transpose_nchw
(
A
,
W
,
[
stride
,
stride
],
padding
)
C
=
topi
.
nn
.
relu
(
B
)
C
=
topi
.
nn
.
relu
(
B
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment