Commit be776dc7 by Amy Wang Committed by Tianqi Chen

[Relay] Clip gradient: grad * (select(x < min || max < x, 0, 1)) (#3509)

parent 3cab3c44
...@@ -118,3 +118,15 @@ def abs_grad(orig, grad): ...@@ -118,3 +118,15 @@ def abs_grad(orig, grad):
zeros = zeros_like(x) zeros = zeros_like(x)
ones = ones_like(x) ones = ones_like(x)
return [where(less(x, zeros), -ones * grad, ones * grad)] return [where(less(x, zeros), -ones * grad, ones * grad)]
@register_gradient("clip")
def clip_grad(orig, grad):
"""Returns grad * (select(x < min || max < x , 0, 1))."""
x = orig.args[0]
a_min = orig.attrs.get_int("a_min")
a_max = orig.attrs.get_int("a_max")
a_mins = broadcast_to_like(const(a_min), x)
a_maxs = broadcast_to_like(const(a_max), x)
zeros = zeros_like(x)
ones = ones_like(x)
return [where(less(x, a_mins), zeros, where(less(a_maxs, x), zeros, ones * grad))]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np
import tvm
from tvm import relay
from tvm.relay.transform import gradient
from tvm.relay.testing import ctx_list
def run_infer_type(expr):
mod = relay.Module.from_expr(expr)
mod = relay.transform.InferType()(mod)
return mod["main"]
def test_clip():
ref = (lambda x: np.where(x > 10.0, np.zeros_like(x),
np.where(x < 1.0, np.zeros_like(x), np.ones_like(x))))
x = relay.var("x", relay.TensorType((10, 4), "float32"))
y = tvm.relay.clip(x, 1.0, 10.0)
data = np.random.rand(10, 4).astype("float32") * 11.0
ref_grad = ref(data)
fwd_func = relay.Function([x], y)
bwd_func = run_infer_type(gradient(fwd_func))
for target, ctx in ctx_list():
intrp = relay.create_executor(ctx=ctx, target=target)
op_res, (op_grad, ) = intrp.evaluate(bwd_func)(data)
np.testing.assert_allclose(op_grad.asnumpy(), ref_grad, rtol=0.01)
if __name__ == "__main__":
test_clip()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment