Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
bcacb764
Commit
bcacb764
authored
Nov 27, 2018
by
masahi
Committed by
Tianqi Chen
Nov 26, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay] Register compute and schedule for upsampling, with miscellaneous fixes (#2171)
parent
a3530f8f
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
81 additions
and
10 deletions
+81
-10
python/tvm/relay/base.py
+7
-5
python/tvm/relay/build_module.py
+2
-2
python/tvm/relay/op/nn/_nn.py
+10
-1
src/relay/op/nn/upsampling.cc
+24
-1
src/relay/op/tensor/transform.cc
+1
-1
tests/python/relay/test_op_level2.py
+37
-0
No files found.
python/tvm/relay/base.py
View file @
bcacb764
...
...
@@ -26,11 +26,8 @@ class RelayNode(NodeBase):
def
astext
(
self
,
show_meta_data
=
True
,
annotate
=
None
):
"""Get the text format of the expression.
Returns
-------
text : str
The text format of the expression.
Parameters
----------
show_meta_data : bool
Whether to include meta data section in the text
if there is meta data.
...
...
@@ -44,6 +41,11 @@ class RelayNode(NodeBase):
meta data section is necessary to fully parse the text format.
However, it can contain dumps that are big(constat weights),
so it can be helpful to skip printing the meta data section.
Returns
-------
text : str
The text format of the expression.
"""
return
_expr
.
RelayPrint
(
self
,
show_meta_data
,
annotate
)
...
...
python/tvm/relay/build_module.py
View file @
bcacb764
...
...
@@ -274,8 +274,8 @@ def create_executor(kind="debug",
kind : str
The type of executor
mod :
relay.Mod
The
mod
mod :
tvm.relay.Module
The
Relay module containing collection of functions
ctx : tvm.TVMContext
The context to execute the code.
...
...
python/tvm/relay/op/nn/_nn.py
View file @
bcacb764
...
...
@@ -76,7 +76,7 @@ def compute_conv2d(attrs, inputs, out_type, target):
out
=
topi
.
nn
.
depthwise_conv2d_nchw
(
inputs
[
0
],
inputs
[
1
],
strides
,
padding
,
dilation
,
out_dtype
=
out_dtype
)
elif
layout
==
"NHWC"
and
\
kernel
_layout
==
"HWOI"
and
\
weight
_layout
==
"HWOI"
and
\
get_const_int
(
inputs
[
1
]
.
shape
[
2
])
==
groups
and
\
get_const_int
(
inputs
[
1
]
.
shape
[
3
])
==
1
:
out
=
topi
.
nn
.
depthwise_conv2d_nhwc
(
...
...
@@ -242,3 +242,12 @@ def schedule_l2_normalize(attrs, outs, target):
return
topi
.
generic
.
schedule_l2_normalize
(
outs
)
reg
.
register_pattern
(
"nn.l2_normalize"
,
OpPattern
.
OUT_ELEMWISE_FUSABLE
)
@reg.register_schedule
(
"nn.upsampling"
)
def
schedule_upsampling
(
_
,
outs
,
target
):
"""Schedule definition of upsampling"""
with
target
:
return
topi
.
generic
.
schedule_injective
(
outs
)
reg
.
register_pattern
(
"nn.upsampling"
,
OpPattern
.
INJECTIVE
)
src/relay/op/nn/upsampling.cc
View file @
bcacb764
...
...
@@ -5,6 +5,9 @@
*/
#include <tvm/relay/op.h>
#include <tvm/relay/attrs/nn.h>
#include <tvm/relay/op_attr_types.h>
#include <topi/elemwise.h>
#include <topi/nn/upsampling.h>
#include "../layout.h"
namespace
tvm
{
...
...
@@ -82,7 +85,27 @@ RELAY_REGISTER_OP("nn.upsampling")
.
set_num_inputs
(
1
)
.
add_argument
(
"data"
,
"Tensor"
,
"The input tensor."
)
.
set_support_level
(
2
)
.
add_type_rel
(
"UpSampling"
,
UpSamplingRel
);
.
add_type_rel
(
"UpSampling"
,
UpSamplingRel
)
.
set_attr
<
FTVMCompute
>
(
"FTVMCompute"
,
[](
const
Attrs
&
attrs
,
const
Array
<
Tensor
>&
inputs
,
const
Type
&
out_type
,
const
Target
&
target
)
{
const
auto
*
param
=
attrs
.
as
<
UpSamplingAttrs
>
();
const
auto
*
out_ttype
=
out_type
.
as
<
TensorTypeNode
>
();
CHECK
(
param
!=
nullptr
);
CHECK
(
param
->
layout
==
"NCHW"
||
param
->
layout
==
"NHWC"
);
CHECK
(
out_ttype
!=
nullptr
);
Array
<
IndexExpr
>
oshape
;
if
(
param
->
layout
==
"NCHW"
)
{
oshape
.
push_back
(
out_ttype
->
shape
[
2
]);
oshape
.
push_back
(
out_ttype
->
shape
[
3
]);
}
else
if
(
param
->
layout
==
"NHWC"
)
{
oshape
.
push_back
(
out_ttype
->
shape
[
1
]);
oshape
.
push_back
(
out_ttype
->
shape
[
2
]);
}
return
Array
<
Tensor
>
{
topi
::
nn
::
upsampling
(
inputs
[
0
],
oshape
,
param
->
layout
,
param
->
method
)};
});
}
// namespace relay
}
// namespace tvm
src/relay/op/tensor/transform.cc
View file @
bcacb764
...
...
@@ -1212,7 +1212,7 @@ bool SplitRel(const Array<Type>& types,
auto
indices
=
param
->
indices_or_sections
.
as
<
ArrayNode
>
()
->
data
;
auto
begin
=
IndexExpr
(
make_zero
(
Int
(
32
)));
std
::
vector
<
Type
>
fields
;
for
(
uint
i
=
0
;
i
<
indices
.
size
();
++
i
)
{
for
(
u
nsigned
int
i
=
0
;
i
<
indices
.
size
();
++
i
)
{
CHECK
(
reporter
->
Assert
(
IndexExpr
(
indices
[
i
])
>
begin
))
<<
"indices_or_sections need to be a sorted ascending list"
;
std
::
vector
<
IndexExpr
>&&
oshape
=
AsVector
(
data
->
shape
);
...
...
tests/python/relay/test_op_level2.py
View file @
bcacb764
...
...
@@ -412,6 +412,42 @@ def test_batch_flatten():
np
.
testing
.
assert_allclose
(
op_res
.
asnumpy
(),
ref_res
,
rtol
=
0.01
)
def
_test_upsampling
(
layout
,
method
):
n
,
c
,
h
,
w
=
tvm
.
var
(
"n"
),
16
,
32
,
32
scale
=
2
dtype
=
"float32"
def
get_shape
():
if
layout
==
"NCHW"
:
return
(
c
,
h
,
w
),
(
c
,
h
*
scale
,
w
*
scale
)
else
:
return
(
h
,
w
,
c
),
(
h
*
scale
,
w
*
scale
,
c
)
ishape
,
oshape
=
get_shape
()
x
=
relay
.
var
(
"x"
,
relay
.
TensorType
((
n
,)
+
ishape
,
dtype
))
y
=
relay
.
nn
.
upsampling
(
x
,
scale
=
scale
,
layout
=
layout
,
method
=
method
)
yy
=
relay
.
ir_pass
.
infer_type
(
y
)
assert
yy
.
checked_type
==
relay
.
TensorType
((
n
,)
+
oshape
,
dtype
)
dshape
=
(
1
,)
+
ishape
x
=
relay
.
var
(
"x"
,
shape
=
dshape
)
y
=
relay
.
nn
.
upsampling
(
x
,
scale
=
scale
,
layout
=
layout
,
method
=
method
)
func
=
relay
.
Function
([
x
],
y
)
data
=
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
)
if
method
==
"NEAREST_NEIGHBOR"
:
ref
=
topi
.
testing
.
upsampling_python
(
data
,
scale
,
layout
)
else
:
ref
=
topi
.
testing
.
bilinear_resize_python
(
data
,
(
h
*
scale
,
w
*
scale
),
layout
)
for
target
,
ctx
in
ctx_list
():
executor
=
relay
.
create_executor
(
"graph"
,
ctx
=
ctx
,
target
=
target
)
out
=
executor
.
evaluate
(
func
)(
data
)
tvm
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
ref
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_upsampling
():
_test_upsampling
(
"NCHW"
,
"NEAREST_NEIGHBOR"
)
_test_upsampling
(
"NCHW"
,
"BILINEAR"
)
_test_upsampling
(
"NHWC"
,
"NEAREST_NEIGHBOR"
)
_test_upsampling
(
"NHWC"
,
"BILINEAR"
)
if
__name__
==
"__main__"
:
test_pool2d
()
test_avg_pool2d_no_count_pad
()
...
...
@@ -425,3 +461,4 @@ if __name__ == "__main__":
test_conv2d_transpose_run
()
test_conv2d_run
()
test_batch_flatten
()
test_upsampling
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment