Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
b637840b
Unverified
Commit
b637840b
authored
Apr 24, 2020
by
Matthew Brookhart
Committed by
GitHub
Apr 25, 2020
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add TopK to ONNX Frontend (#5441)
* Add TopK to ONNX Frontend * respond to review comments
parent
2dbe6261
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
57 additions
and
0 deletions
+57
-0
python/tvm/relay/frontend/onnx.py
+19
-0
tests/python/frontend/onnx/test_forward.py
+38
-0
No files found.
python/tvm/relay/frontend/onnx.py
View file @
b637840b
...
@@ -1470,6 +1470,22 @@ class NonZero(OnnxOpConverter):
...
@@ -1470,6 +1470,22 @@ class NonZero(OnnxOpConverter):
output
=
AttrCvt
(
op_name
=
'argwhere'
)(
inputs
,
attr
,
params
)
output
=
AttrCvt
(
op_name
=
'argwhere'
)(
inputs
,
attr
,
params
)
return
_op
.
transpose
(
output
,
axes
=
(
1
,
0
))
return
_op
.
transpose
(
output
,
axes
=
(
1
,
0
))
class
TopK
(
OnnxOpConverter
):
"""Operator converter for TopK
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
if
len
(
inputs
)
!=
2
:
raise
ValueError
(
"Expect 2 input only"
)
axis
=
attr
.
get
(
"axis"
,
-
1
)
largest
=
attr
.
get
(
"largest"
,
1
)
if
largest
==
0
:
raise
ValueError
(
"TVM only supports finding TopK largest elements"
)
K
=
int
(
infer_value
(
inputs
[
1
],
params
)
.
asnumpy
()[
0
])
return
_op
.
topk
(
inputs
[
0
],
k
=
K
,
axis
=
axis
)
# compatible operators that do NOT require any conversion.
# compatible operators that do NOT require any conversion.
_identity_list
=
[]
_identity_list
=
[]
...
@@ -1573,8 +1589,11 @@ def _get_convert_map(opset):
...
@@ -1573,8 +1589,11 @@ def _get_convert_map(opset):
'ReduceProd'
:
ReduceProd
.
get_converter
(
opset
),
'ReduceProd'
:
ReduceProd
.
get_converter
(
opset
),
# 'ReduceProd'
# 'ReduceProd'
# 'ReduceLogSumExp'
# 'ReduceLogSumExp'
#defs/sorting
'ArgMax'
:
ArgMax
.
get_converter
(
opset
),
'ArgMax'
:
ArgMax
.
get_converter
(
opset
),
'ArgMin'
:
ArgMin
.
get_converter
(
opset
),
'ArgMin'
:
ArgMin
.
get_converter
(
opset
),
'TopK'
:
TopK
.
get_converter
(
opset
),
# defs/tensor
# defs/tensor
'Cast'
:
Cast
.
get_converter
(
opset
),
'Cast'
:
Cast
.
get_converter
(
opset
),
...
...
tests/python/frontend/onnx/test_forward.py
View file @
b637840b
...
@@ -2330,6 +2330,43 @@ def test_nonzero():
...
@@ -2330,6 +2330,43 @@ def test_nonzero():
result
=
np
.
array
((
np
.
nonzero
(
input_data
)))
# expected output [[0, 1, 2, 2], [0, 1, 0, 1]]
result
=
np
.
array
((
np
.
nonzero
(
input_data
)))
# expected output [[0, 1, 2, 2], [0, 1, 0, 1]]
verify_nonzero
(
input_data
,
result
,
dtype
=
np
.
int64
)
verify_nonzero
(
input_data
,
result
,
dtype
=
np
.
int64
)
def
test_topk
():
def
verify_topk
(
input_dims
,
K
,
axis
=-
1
):
output_dims
=
list
(
input_dims
)
output_dims
[
axis
]
=
K
node
=
helper
.
make_node
(
'TopK'
,
inputs
=
[
'X'
,
'K'
],
outputs
=
[
'Values'
,
'Indicies'
],
axis
=
axis
)
graph
=
helper
.
make_graph
([
node
],
"topk_test"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"X"
,
TensorProto
.
FLOAT
,
list
(
input_dims
)),
helper
.
make_tensor_value_info
(
"K"
,
TensorProto
.
INT64
,
[
1
,])],
initializer
=
[
helper
.
make_tensor
(
"K"
,
TensorProto
.
INT64
,
[
1
],
[
K
])],
outputs
=
[
helper
.
make_tensor_value_info
(
"Values"
,
TensorProto
.
FLOAT
,
output_dims
),
helper
.
make_tensor_value_info
(
"Indicies"
,
TensorProto
.
INT64
,
output_dims
)])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'topk_test'
)
indata
=
np
.
random
.
uniform
(
-
10
,
10
,
input_dims
)
.
astype
(
np
.
float32
)
onnx_out
=
get_onnxruntime_output
(
model
,
[
indata
,
k
])
for
target
,
ctx
in
[(
'llvm'
,
tvm
.
cpu
())]:
tvm_out
=
get_tvm_output
(
model
,
indata
,
target
,
ctx
,
[
output_dims
,
output_dims
],
output_dtype
=
[
'float32'
,
'int64'
])
tvm
.
testing
.
assert_allclose
(
onnx_out
,
tvm_out
,
rtol
=
1e-05
,
atol
=
1e-05
)
for
n
in
[
12
,
32
]:
for
shape
in
[[
n
],
[
n
,
n
],
[
n
,
n
,
n
]]:
for
k
in
[
1
,
5
,
10
]:
verify_topk
(
shape
,
k
)
verify_topk
([
n
,
n
,
n
],
5
,
0
)
verify_topk
([
n
,
n
,
n
],
5
,
1
)
verify_topk
([
n
,
n
,
n
],
5
,
2
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_flatten
()
test_flatten
()
...
@@ -2392,3 +2429,4 @@ if __name__ == '__main__':
...
@@ -2392,3 +2429,4 @@ if __name__ == '__main__':
test_lstm
()
test_lstm
()
test_resize
()
test_resize
()
test_nonzero
()
test_nonzero
()
test_topk
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment