Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
b63267b9
Commit
b63267b9
authored
May 22, 2019
by
Zhao Wu
Committed by
Siva
May 22, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TFLite] Convert TFLite NCHW to NHWC (#3141)
* Convert TFLite NCHW to NHWC * Minor comment fix
parent
4b1d3d87
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
41 additions
and
221 deletions
+41
-221
python/tvm/relay/frontend/tflite.py
+15
-105
tests/python/frontend/tflite/test_forward.py
+21
-102
tutorials/frontend/from_tflite.py
+5
-14
No files found.
python/tvm/relay/frontend/tflite.py
View file @
b63267b9
...
@@ -209,44 +209,10 @@ class OperatorConverter(object):
...
@@ -209,44 +209,10 @@ class OperatorConverter(object):
reshape_options
=
ReshapeOptions
()
reshape_options
=
ReshapeOptions
()
reshape_options
.
Init
(
op_options
.
Bytes
,
op_options
.
Pos
)
reshape_options
.
Init
(
op_options
.
Bytes
,
op_options
.
Pos
)
target_shape
=
reshape_options
.
NewShapeAsNumpy
()
target_shape
=
reshape_options
.
NewShapeAsNumpy
()
input_shape_length
=
len
(
input_tensor
.
tensor
.
ShapeAsNumpy
())
in_expr
=
self
.
get_expr
(
input_tensor_idx
)
in_expr
=
self
.
get_expr
(
input_tensor_idx
)
if
input_shape_length
in
(
1
,
2
):
# The rule is channel first (after N but before H, W).
# length of 1 means N*H*W*C, do nothing.
# length of 2 means N*H*W, C, do nothing.
pass
elif
input_shape_length
==
3
:
# convert N C H*W to N H*W C
in_expr
=
_op
.
transpose
(
in_expr
,
axes
=
(
0
,
2
,
1
))
elif
input_shape_length
==
4
:
# convert input to N H W C, then reshape to target shape,
# finally convert back if necessary
in_expr
=
_op
.
transpose
(
in_expr
,
axes
=
(
0
,
2
,
3
,
1
))
else
:
msg
=
'Input shape length {} for operator Reshape is not valid.'
raise
tvm
.
error
.
OpAttributeInvalid
(
msg
.
format
(
input_shape_length
))
out
=
_op
.
reshape
(
in_expr
,
newshape
=
tuple
(
target_shape
))
out
=
_op
.
reshape
(
in_expr
,
newshape
=
tuple
(
target_shape
))
# The rule is channel first.
# 1: N*H*W*C
# 2: N*H*W, C
# 3: N H W C, reshape to N H*W C, transpose to N C H*W
# 4: N H W C, transpose to N C H W
# add more if we need target shapes in future
if
len
(
target_shape
)
==
1
or
len
(
target_shape
)
==
2
:
pass
elif
len
(
target_shape
)
==
3
:
out
=
_op
.
transpose
(
out
,
axes
=
(
0
,
2
,
1
))
elif
len
(
target_shape
)
==
4
:
out
=
_op
.
transpose
(
out
,
axes
=
(
0
,
3
,
1
,
2
))
else
:
raise
tvm
.
error
.
OpAttributeInvalid
(
'Length of target shape must be between 1 and 5 for operator Reshape.'
)
return
out
return
out
def
convert_softmax
(
self
,
op
):
def
convert_softmax
(
self
,
op
):
...
@@ -269,7 +235,7 @@ class OperatorConverter(object):
...
@@ -269,7 +235,7 @@ class OperatorConverter(object):
return
out
return
out
def
convert_concatenation
(
self
,
op
):
def
convert_concatenation
(
self
,
op
):
"""
c
onvert TFLite concatenation"""
"""
C
onvert TFLite concatenation"""
try
:
try
:
from
tflite.Operator
import
Operator
from
tflite.Operator
import
Operator
from
tflite.ConcatenationOptions
import
ConcatenationOptions
from
tflite.ConcatenationOptions
import
ConcatenationOptions
...
@@ -292,15 +258,6 @@ class OperatorConverter(object):
...
@@ -292,15 +258,6 @@ class OperatorConverter(object):
concatenation_options
.
Init
(
op_options
.
Bytes
,
op_options
.
Pos
)
concatenation_options
.
Init
(
op_options
.
Bytes
,
op_options
.
Pos
)
concatenation_axis
=
concatenation_options
.
Axis
()
concatenation_axis
=
concatenation_options
.
Axis
()
fused_activation_fn
=
concatenation_options
.
FusedActivationFunction
()
fused_activation_fn
=
concatenation_options
.
FusedActivationFunction
()
input_shape_length
=
len
(
input_tensors
[
0
]
.
tensor
.
ShapeAsNumpy
())
# TFLite is N H W C, our layout is N C H W
if
input_shape_length
<=
4
:
axis_convert_map
=
[
0
]
+
list
(
range
(
2
,
input_shape_length
))
+
[
1
]
concatenation_axis
=
axis_convert_map
[
concatenation_axis
]
else
:
raise
NotImplementedError
(
"Not support input shape length {} of concatenatio : "
.
format
(
str
(
input_shape_length
)))
# with axis in N H W C
# with axis in N H W C
out
=
_op
.
concatenate
(
in_exprs
,
axis
=
concatenation_axis
)
out
=
_op
.
concatenate
(
in_exprs
,
axis
=
concatenation_axis
)
...
@@ -336,20 +293,6 @@ class OperatorConverter(object):
...
@@ -336,20 +293,6 @@ class OperatorConverter(object):
rhs_expr
=
self
.
exp_tab
.
new_const
(
self
.
get_tensor_value
(
rhs_tensor
),
rhs_expr
=
self
.
exp_tab
.
new_const
(
self
.
get_tensor_value
(
rhs_tensor
),
dtype
=
rhs_type_str
)
dtype
=
rhs_type_str
)
# In this case, we have to be careful about formatting.
input_shape_length
=
len
(
rhs_tensor
.
tensor
.
ShapeAsNumpy
())
if
input_shape_length
in
(
1
,
2
):
pass
elif
input_shape_length
==
3
:
# N H*W C to N C H*W
rhs_expr
=
_op
.
transpose
(
rhs_expr
,
axes
=
(
0
,
2
,
1
))
elif
input_shape_length
==
4
:
# N H W C to N C H W
rhs_expr
=
_op
.
transpose
(
rhs_expr
,
axes
=
(
0
,
3
,
1
,
2
))
else
:
msg
=
'Input shape length {} for operator ADD is not valid.'
raise
tvm
.
error
.
OpAttributeInvalid
(
msg
.
format
(
input_shape_length
))
out
=
_op
.
add
(
lhs_expr
,
rhs_expr
)
out
=
_op
.
add
(
lhs_expr
,
rhs_expr
)
return
out
return
out
...
@@ -440,46 +383,10 @@ class OperatorConverter(object):
...
@@ -440,46 +383,10 @@ class OperatorConverter(object):
squeeze_options
=
SqueezeOptions
()
squeeze_options
=
SqueezeOptions
()
squeeze_options
.
Init
(
op_options
.
Bytes
,
op_options
.
Pos
)
squeeze_options
.
Init
(
op_options
.
Bytes
,
op_options
.
Pos
)
squeeze_axis
=
squeeze_options
.
SqueezeDimsAsNumpy
()
squeeze_axis
=
squeeze_options
.
SqueezeDimsAsNumpy
()
input_shape_length
=
len
(
input_tensor
.
tensor
.
ShapeAsNumpy
())
output_shape_length
=
len
(
output_tensors
[
0
]
.
tensor
.
ShapeAsNumpy
())
in_expr
=
self
.
get_expr
(
input_tensor_idx
)
in_expr
=
self
.
get_expr
(
input_tensor_idx
)
# TFLite is N H W C, our layout is N C H W
if
input_shape_length
in
(
1
,
2
):
# The rule is channel first (after N but before H, W).
# length of 1 means N*H*W*C, do nothing.
# length of 2 means N*H*W, C, do nothing.
pass
elif
input_shape_length
==
3
:
# convert N C H*W to N H*W C
in_expr
=
_op
.
transpose
(
in_expr
,
axes
=
(
0
,
2
,
1
))
elif
input_shape_length
==
4
:
# convert input to N H W C, then reshape to target shape,
# finally convert back if necessary
in_expr
=
_op
.
transpose
(
in_expr
,
axes
=
(
0
,
2
,
3
,
1
))
else
:
msg
=
'Input shape length {} for operator Squeeze is not valid.'
raise
tvm
.
error
.
OpAttributeInvalid
(
msg
.
format
(
input_shape_length
))
out
=
_op
.
squeeze
(
in_expr
,
axis
=
tuple
(
squeeze_axis
))
out
=
_op
.
squeeze
(
in_expr
,
axis
=
tuple
(
squeeze_axis
))
# The rule is channel first.
# 1: N*H*W*C
# 2: N*H*W, C
# 3: N H W C, reshape to N H*W C, transpose to N C H*W
# 4: N H W C, transpose to N C H W
# add more if we need target shapes in future
if
output_shape_length
in
(
1
,
2
):
pass
elif
output_shape_length
==
3
:
out
=
_op
.
transpose
(
out
,
axes
=
(
0
,
2
,
1
))
elif
output_shape_length
==
4
:
out
=
_op
.
transpose
(
out
,
axes
=
(
0
,
3
,
1
,
2
))
else
:
msg
=
'Output shape length {} for operator Squeeze is not valid.'
raise
tvm
.
error
.
OpAttributeInvalid
(
msg
.
format
(
output_shape_length
))
return
out
return
out
def
convert_fused_activation_function
(
self
,
in_expr
,
fused_activation_fn
):
def
convert_fused_activation_function
(
self
,
in_expr
,
fused_activation_fn
):
...
@@ -562,13 +469,16 @@ class OperatorConverter(object):
...
@@ -562,13 +469,16 @@ class OperatorConverter(object):
params
=
{
'kernel_size'
:
[
kernel_h
,
kernel_w
],
params
=
{
'kernel_size'
:
[
kernel_h
,
kernel_w
],
'strides'
:
[
stride_h
,
stride_w
],
'strides'
:
[
stride_h
,
stride_w
],
'dilation'
:
[
dilation_h
,
dilation_w
],
'dilation'
:
[
dilation_h
,
dilation_w
],
'padding'
:
[
0
,
0
]}
'padding'
:
[
0
,
0
],
'data_layout'
:
'NHWC'
}
if
is_depthwise_conv
:
if
is_depthwise_conv
:
params
[
'channels'
]
=
int
(
in_channels
*
multiplier
)
params
[
'channels'
]
=
int
(
in_channels
*
multiplier
)
params
[
'groups'
]
=
int
(
in_channels
)
params
[
'groups'
]
=
int
(
in_channels
)
params
[
'kernel_layout'
]
=
'HWOI'
else
:
else
:
params
[
'channels'
]
=
int
(
output_channels
)
params
[
'channels'
]
=
int
(
output_channels
)
params
[
'kernel_layout'
]
=
'HWIO'
# weight tensor type should be UINT8 (quantization) or FLOAT32
# weight tensor type should be UINT8 (quantization) or FLOAT32
weight_tensor_type
=
weight_tensor
.
tensor
.
Type
()
weight_tensor_type
=
weight_tensor
.
tensor
.
Type
()
...
@@ -578,12 +488,9 @@ class OperatorConverter(object):
...
@@ -578,12 +488,9 @@ class OperatorConverter(object):
in_expr
=
self
.
get_expr
(
input_tensor_idx
)
in_expr
=
self
.
get_expr
(
input_tensor_idx
)
weight_value
=
self
.
get_tensor_value
(
weight_tensor
)
weight_value
=
self
.
get_tensor_value
(
weight_tensor
)
if
is_depthwise_conv
:
# TFLite is OC/M KH KW IC, we require KH KW IC OC/M
# TFLite is M KH KW IC, we require IC M KH KW
# M means multiplier in depthwise convolution
weight_value
=
weight_value
.
transpose
((
3
,
0
,
1
,
2
))
weight_value
=
weight_value
.
transpose
((
1
,
2
,
3
,
0
))
else
:
# TFLite is OC KH KW IC, we require OC IC KH kW
weight_value
=
weight_value
.
transpose
((
0
,
3
,
1
,
2
))
weight_expr
=
self
.
exp_tab
.
new_const
(
weight_value
,
dtype
=
weight_tensor_type_str
)
weight_expr
=
self
.
exp_tab
.
new_const
(
weight_value
,
dtype
=
weight_tensor_type_str
)
...
@@ -592,9 +499,10 @@ class OperatorConverter(object):
...
@@ -592,9 +499,10 @@ class OperatorConverter(object):
elif
padding
==
Padding
.
SAME
:
elif
padding
==
Padding
.
SAME
:
pad_top
,
pad_bottom
=
get_pad_value
(
input_h
,
dilated_kernel_h
,
stride_h
)
pad_top
,
pad_bottom
=
get_pad_value
(
input_h
,
dilated_kernel_h
,
stride_h
)
pad_left
,
pad_right
=
get_pad_value
(
input_w
,
dilated_kernel_w
,
stride_w
)
pad_left
,
pad_right
=
get_pad_value
(
input_w
,
dilated_kernel_w
,
stride_w
)
in_expr
=
_op
.
nn
.
pad
(
data
=
in_expr
,
pad_width
=
((
0
,
0
),
(
0
,
0
),
in_expr
=
_op
.
nn
.
pad
(
data
=
in_expr
,
pad_width
=
((
0
,
0
),
(
pad_top
,
pad_bottom
),
(
pad_top
,
pad_bottom
),
(
pad_left
,
pad_right
)))
(
pad_left
,
pad_right
),
(
0
,
0
)))
else
:
else
:
raise
tvm
.
error
.
OpAttributeUnimplemented
(
raise
tvm
.
error
.
OpAttributeUnimplemented
(
'Padding format {} is not supported for operator Conv.'
.
format
(
padding
))
'Padding format {} is not supported for operator Conv.'
.
format
(
padding
))
...
@@ -610,7 +518,8 @@ class OperatorConverter(object):
...
@@ -610,7 +518,8 @@ class OperatorConverter(object):
bias_tensor_type_str
=
self
.
get_tensor_type_str
(
bias_tensor_type
)
bias_tensor_type_str
=
self
.
get_tensor_type_str
(
bias_tensor_type
)
bias_expr
=
self
.
exp_tab
.
new_const
(
self
.
get_tensor_value
(
bias_tensor
),
bias_expr
=
self
.
exp_tab
.
new_const
(
self
.
get_tensor_value
(
bias_tensor
),
dtype
=
bias_tensor_type_str
)
dtype
=
bias_tensor_type_str
)
out
=
_op
.
nn
.
bias_add
(
out
,
bias_expr
)
channel_axis
=
3
out
=
_op
.
nn
.
bias_add
(
out
,
bias_expr
,
axis
=
channel_axis
)
# If we have fused activations
# If we have fused activations
if
fused_activation_fn
!=
ActivationFunctionType
.
NONE
:
if
fused_activation_fn
!=
ActivationFunctionType
.
NONE
:
...
@@ -648,7 +557,8 @@ class OperatorConverter(object):
...
@@ -648,7 +557,8 @@ class OperatorConverter(object):
params
=
{
'pool_size'
:
(
filter_h
,
filter_w
),
params
=
{
'pool_size'
:
(
filter_h
,
filter_w
),
'strides'
:
(
stride_h
,
stride_w
),
'strides'
:
(
stride_h
,
stride_w
),
'padding'
:
[
0
,
0
]}
'padding'
:
[
0
,
0
],
'layout'
:
'NHWC'
}
in_expr
=
self
.
get_expr
(
input_tensor_idx
)
in_expr
=
self
.
get_expr
(
input_tensor_idx
)
...
...
tests/python/frontend/tflite/test_forward.py
View file @
b63267b9
...
@@ -116,12 +116,10 @@ def run_tflite_graph(tflite_model_buf, input_data):
...
@@ -116,12 +116,10 @@ def run_tflite_graph(tflite_model_buf, input_data):
return
tflite_output
return
tflite_output
def
compare_tflite_with_tvm
(
tflite_in_data
,
tvm_in_data
,
in_name
,
input_tensors
,
def
compare_tflite_with_tvm
(
in_data
,
in_name
,
input_tensors
,
output_tensors
,
output_need_transpose
=
False
,
output_tensors
,
init_global_variables
=
False
):
init_global_variables
=
False
):
"""Generic function to generate and compare TFLite and TVM output"""
"""Generic function to generate and compare TFLite and TVM output"""
tflite_in_data
=
convert_to_list
(
tflite_in_data
)
in_data
=
convert_to_list
(
in_data
)
tvm_in_data
=
convert_to_list
(
tvm_in_data
)
in_name
=
convert_to_list
(
in_name
)
in_name
=
convert_to_list
(
in_name
)
in_node
=
[
0
]
*
len
(
in_name
)
in_node
=
[
0
]
*
len
(
in_name
)
for
i
in
range
(
len
(
in_name
)):
for
i
in
range
(
len
(
in_name
)):
...
@@ -134,7 +132,7 @@ def compare_tflite_with_tvm(tflite_in_data, tvm_in_data, in_name, input_tensors,
...
@@ -134,7 +132,7 @@ def compare_tflite_with_tvm(tflite_in_data, tvm_in_data, in_name, input_tensors,
converter
=
tf
.
contrib
.
lite
.
TFLiteConverter
.
from_session
(
converter
=
tf
.
contrib
.
lite
.
TFLiteConverter
.
from_session
(
sess
,
input_tensors
,
output_tensors
)
sess
,
input_tensors
,
output_tensors
)
tflite_model_buffer
=
converter
.
convert
()
tflite_model_buffer
=
converter
.
convert
()
tflite_output
=
run_tflite_graph
(
tflite_model_buffer
,
tflite_
in_data
)
tflite_output
=
run_tflite_graph
(
tflite_model_buffer
,
in_data
)
for
device
in
[
"llvm"
]:
for
device
in
[
"llvm"
]:
ctx
=
tvm
.
context
(
device
,
0
)
ctx
=
tvm
.
context
(
device
,
0
)
...
@@ -142,25 +140,9 @@ def compare_tflite_with_tvm(tflite_in_data, tvm_in_data, in_name, input_tensors,
...
@@ -142,25 +140,9 @@ def compare_tflite_with_tvm(tflite_in_data, tvm_in_data, in_name, input_tensors,
print
(
"Skip because
%
s is not enabled"
%
device
)
print
(
"Skip because
%
s is not enabled"
%
device
)
continue
continue
tvm_output
=
run_tvm_graph
(
tflite_model_buffer
,
tvm_
in_data
,
in_node
,
target
=
device
)
tvm_output
=
run_tvm_graph
(
tflite_model_buffer
,
in_data
,
in_node
,
target
=
device
)
for
i
in
range
(
len
(
tflite_output
)):
for
i
in
range
(
len
(
tflite_output
)):
if
output_need_transpose
:
tvm
.
testing
.
assert_allclose
(
tflite_output
[
i
],
tvm_output
[
i
],
atol
=
1e-5
,
rtol
=
1e-5
)
dim
=
len
(
tvm_output
[
i
]
.
shape
)
if
dim
==
3
:
# N C H*W to N H*W C
axes
=
(
0
,
2
,
1
)
elif
dim
==
4
:
# N C H W to N H W C
axes
=
(
0
,
2
,
3
,
1
)
else
:
raise
NotImplementedError
(
"Not support input shape {} of transpose : "
.
format
(
str
(
dim
)))
tvm
.
testing
.
assert_allclose
(
tflite_output
[
i
],
np
.
transpose
(
tvm_output
[
i
],
axes
=
axes
),
atol
=
1e-5
,
rtol
=
1e-5
)
else
:
tvm
.
testing
.
assert_allclose
(
tflite_output
[
i
],
tvm_output
[
i
],
atol
=
1e-5
,
rtol
=
1e-5
)
sess
.
close
()
sess
.
close
()
...
@@ -173,14 +155,12 @@ def _test_pooling_iteration(input_shape, **kwargs):
...
@@ -173,14 +155,12 @@ def _test_pooling_iteration(input_shape, **kwargs):
x
=
-
np
.
arange
(
x
=
-
np
.
arange
(
np
.
prod
(
input_shape
),
dtype
=
np
.
float32
)
.
reshape
(
input_shape
)
-
1
np
.
prod
(
input_shape
),
dtype
=
np
.
float32
)
.
reshape
(
input_shape
)
-
1
tvm_data
=
np
.
transpose
(
x
,
axes
=
(
0
,
3
,
1
,
2
))
with
tf
.
Graph
()
.
as_default
():
with
tf
.
Graph
()
.
as_default
():
in_data
=
array_ops
.
placeholder
(
shape
=
input_shape
,
dtype
=
'float32'
)
in_data
=
array_ops
.
placeholder
(
shape
=
input_shape
,
dtype
=
'float32'
)
out
=
nn_ops
.
pool
(
in_data
,
**
kwargs
)
out
=
nn_ops
.
pool
(
in_data
,
**
kwargs
)
compare_tflite_with_tvm
(
x
,
tvm_data
,
'Placeholder:0'
,
[
in_data
],
[
out
],
compare_tflite_with_tvm
(
x
,
'Placeholder:0'
,
[
in_data
],
[
out
])
output_need_transpose
=
True
)
def
_test_pooling
(
input_shape
,
**
kwargs
):
def
_test_pooling
(
input_shape
,
**
kwargs
):
...
@@ -258,13 +238,8 @@ def _test_convolution(tensor_in_sizes, filter_in_sizes,
...
@@ -258,13 +238,8 @@ def _test_convolution(tensor_in_sizes, filter_in_sizes,
strides
=
strides
,
strides
=
strides
,
padding
=
padding
,
padding
=
padding
,
data_format
=
data_format
)
data_format
=
data_format
)
# TFLite is NHWC, TVM is NCHW
data_array
=
np
.
reshape
(
data_array
,
tensor_in_sizes
)
.
astype
(
'float32'
)
tflite_data_array
=
np
.
reshape
(
data_array
,
tensor_in_sizes
)
.
astype
(
'float32'
)
compare_tflite_with_tvm
(
data_array
,
'Placeholder:0'
,
[
in_data
],
[
out
])
tvm_data_array
=
np
.
transpose
(
tflite_data_array
,
axes
=
(
0
,
3
,
1
,
2
))
# TFLite output is NHWC, TVM is NCHW, we need transpose
compare_tflite_with_tvm
(
tflite_data_array
,
tvm_data_array
,
'Placeholder:0'
,
[
in_data
],
[
out
],
output_need_transpose
=
True
)
def
test_forward_convolution
():
def
test_forward_convolution
():
...
@@ -286,22 +261,11 @@ def test_forward_convolution():
...
@@ -286,22 +261,11 @@ def test_forward_convolution():
def
_test_reshape
(
data
,
out_shape
):
def
_test_reshape
(
data
,
out_shape
):
""" One iteration of reshape operation with given data and out shape """
""" One iteration of reshape operation with given data and out shape """
# see relay/frontend/tflite.py convert_reshape more detail of channel first rule
if
len
(
data
.
shape
)
==
1
or
len
(
data
.
shape
)
==
2
:
tvm_data
=
data
elif
len
(
data
.
shape
)
==
3
:
tvm_data
=
np
.
transpose
(
data
,
axes
=
(
0
,
2
,
1
))
elif
len
(
data
.
shape
)
==
4
:
tvm_data
=
np
.
transpose
(
data
,
axes
=
(
0
,
3
,
1
,
2
))
else
:
raise
NotImplementedError
(
"Not support input shape {} of reshape : "
.
format
(
str
(
len
(
data
))))
with
tf
.
Graph
()
.
as_default
():
with
tf
.
Graph
()
.
as_default
():
in_data
=
array_ops
.
placeholder
(
shape
=
data
.
shape
,
dtype
=
data
.
dtype
)
in_data
=
array_ops
.
placeholder
(
shape
=
data
.
shape
,
dtype
=
data
.
dtype
)
out
=
array_ops
.
reshape
(
in_data
,
out_shape
)
out
=
array_ops
.
reshape
(
in_data
,
out_shape
)
compare_tflite_with_tvm
(
data
,
tvm_data
,
'Placeholder:0'
,
[
in_data
],
[
out
])
compare_tflite_with_tvm
(
data
,
'Placeholder:0'
,
[
in_data
],
[
out
])
def
test_forward_reshape
():
def
test_forward_reshape
():
...
@@ -319,18 +283,6 @@ def _test_concatenation(data, axis):
...
@@ -319,18 +283,6 @@ def _test_concatenation(data, axis):
""" One iteration of concatenation """
""" One iteration of concatenation """
assert
len
(
data
)
>=
1
assert
len
(
data
)
>=
1
need_transpose
=
False
if
len
(
data
[
0
]
.
shape
)
==
1
or
len
(
data
[
0
]
.
shape
)
==
2
:
tvm_data
=
data
elif
len
(
data
[
0
]
.
shape
)
==
3
:
#need_transpose = True
tvm_data
=
[
np
.
transpose
(
d
,
axes
=
(
0
,
2
,
1
))
for
d
in
data
]
elif
len
(
data
[
0
]
.
shape
)
==
4
:
need_transpose
=
True
tvm_data
=
[
np
.
transpose
(
d
,
axes
=
(
0
,
3
,
1
,
2
))
for
d
in
data
]
else
:
raise
NotImplementedError
(
"Not support input shape {} of reshape : "
.
format
(
str
(
len
(
data
))))
with
tf
.
Graph
()
.
as_default
():
with
tf
.
Graph
()
.
as_default
():
in_data
=
[
in_data
=
[
...
@@ -339,7 +291,7 @@ def _test_concatenation(data, axis):
...
@@ -339,7 +291,7 @@ def _test_concatenation(data, axis):
out
=
array_ops
.
concat
(
in_data
,
axis
=
axis
)
out
=
array_ops
.
concat
(
in_data
,
axis
=
axis
)
name
=
[
"in_{}:0"
.
format
(
idx
)
for
idx
in
range
(
len
(
data
))]
name
=
[
"in_{}:0"
.
format
(
idx
)
for
idx
in
range
(
len
(
data
))]
compare_tflite_with_tvm
(
data
,
tvm_data
,
name
,
in_data
,
[
out
],
need_transpose
)
compare_tflite_with_tvm
(
data
,
name
,
in_data
,
[
out
]
)
def
test_forward_concatenation
():
def
test_forward_concatenation
():
...
@@ -366,33 +318,19 @@ def _test_add(data):
...
@@ -366,33 +318,19 @@ def _test_add(data):
""" One iteration of add """
""" One iteration of add """
assert
len
(
data
)
==
2
assert
len
(
data
)
==
2
need_transpose
=
False
if
len
(
data
[
0
]
.
shape
)
==
1
or
len
(
data
[
0
]
.
shape
)
==
2
:
tvm_data
=
data
elif
len
(
data
[
0
]
.
shape
)
==
3
:
need_transpose
=
True
tvm_data
=
[
np
.
transpose
(
d
,
axes
=
(
0
,
2
,
1
))
for
d
in
data
]
elif
len
(
data
[
0
]
.
shape
)
==
4
:
need_transpose
=
True
tvm_data
=
[
np
.
transpose
(
d
,
axes
=
(
0
,
3
,
1
,
2
))
for
d
in
data
]
else
:
raise
NotImplementedError
(
"Not support input shape {} of add : "
.
format
(
str
(
len
(
data
.
shape
))))
# Test with two tensors
# Test with two tensors
with
tf
.
Graph
()
.
as_default
():
with
tf
.
Graph
()
.
as_default
():
in_data
=
[
array_ops
.
placeholder
(
shape
=
data
[
0
]
.
shape
,
dtype
=
data
[
0
]
.
dtype
,
name
=
'in_0'
),
in_data
=
[
array_ops
.
placeholder
(
shape
=
data
[
0
]
.
shape
,
dtype
=
data
[
0
]
.
dtype
,
name
=
'in_0'
),
array_ops
.
placeholder
(
shape
=
data
[
1
]
.
shape
,
dtype
=
data
[
1
]
.
dtype
,
name
=
'in_1'
)]
array_ops
.
placeholder
(
shape
=
data
[
1
]
.
shape
,
dtype
=
data
[
1
]
.
dtype
,
name
=
'in_1'
)]
out
=
math_ops
.
add
(
in_data
[
0
],
in_data
[
1
])
out
=
math_ops
.
add
(
in_data
[
0
],
in_data
[
1
])
compare_tflite_with_tvm
(
data
,
tvm_data
,
[
'in_0:0'
,
'in_1:0'
],
compare_tflite_with_tvm
(
data
,
[
'in_0:0'
,
'in_1:0'
],
in_data
,
[
out
])
in_data
,
[
out
],
need_transpose
)
# Test with tensor and constant
# Test with tensor and constant
with
tf
.
Graph
()
.
as_default
():
with
tf
.
Graph
()
.
as_default
():
in_data
=
[
array_ops
.
placeholder
(
shape
=
data
[
0
]
.
shape
,
dtype
=
data
[
0
]
.
dtype
,
name
=
'in'
)]
in_data
=
[
array_ops
.
placeholder
(
shape
=
data
[
0
]
.
shape
,
dtype
=
data
[
0
]
.
dtype
,
name
=
'in'
)]
out
=
math_ops
.
add
(
in_data
[
0
],
ops
.
convert_to_tensor
(
data
[
1
],
dtype
=
data
[
1
]
.
dtype
))
out
=
math_ops
.
add
(
in_data
[
0
],
ops
.
convert_to_tensor
(
data
[
1
],
dtype
=
data
[
1
]
.
dtype
))
compare_tflite_with_tvm
([
data
[
0
]],
[
tvm_data
[
0
]],
[
'in:0'
],
compare_tflite_with_tvm
([
data
[
0
]],
[
'in:0'
],
in_data
,
[
out
])
in_data
,
[
out
],
need_transpose
)
def
test_forward_add
():
def
test_forward_add
():
...
@@ -415,19 +353,6 @@ def _test_squeeze(data, squeeze_dims=None):
...
@@ -415,19 +353,6 @@ def _test_squeeze(data, squeeze_dims=None):
if
squeeze_dims
is
None
:
if
squeeze_dims
is
None
:
squeeze_dims
=
[]
squeeze_dims
=
[]
# see relay/frontend/tflite.py convert_squeeze more detail of channel first rule
if
len
(
data
.
shape
)
==
1
or
len
(
data
.
shape
)
==
2
:
tvm_data
=
data
elif
len
(
data
.
shape
)
==
3
:
tvm_data
=
np
.
transpose
(
data
,
axes
=
(
0
,
2
,
1
))
elif
len
(
data
.
shape
)
==
4
:
tvm_data
=
np
.
transpose
(
data
,
axes
=
(
0
,
3
,
1
,
2
))
else
:
raise
NotImplementedError
(
"Not support input shape {} of reshape : "
.
format
(
str
(
len
(
data
.
shape
))))
tvm_data
=
np
.
transpose
(
data
,
axes
=
(
0
,
3
,
1
,
2
))
with
tf
.
Graph
()
.
as_default
():
with
tf
.
Graph
()
.
as_default
():
in_data
=
array_ops
.
placeholder
(
shape
=
data
.
shape
,
dtype
=
data
.
dtype
)
in_data
=
array_ops
.
placeholder
(
shape
=
data
.
shape
,
dtype
=
data
.
dtype
)
...
@@ -436,7 +361,7 @@ def _test_squeeze(data, squeeze_dims=None):
...
@@ -436,7 +361,7 @@ def _test_squeeze(data, squeeze_dims=None):
else
:
else
:
out
=
array_ops
.
squeeze
(
in_data
)
out
=
array_ops
.
squeeze
(
in_data
)
compare_tflite_with_tvm
(
data
,
tvm_data
,
'Placeholder:0'
,
[
in_data
],
[
out
])
compare_tflite_with_tvm
(
data
,
'Placeholder:0'
,
[
in_data
],
[
out
])
def
test_forward_squeeze
():
def
test_forward_squeeze
():
...
@@ -453,7 +378,7 @@ def _test_softmax(data):
...
@@ -453,7 +378,7 @@ def _test_softmax(data):
with
tf
.
Graph
()
.
as_default
():
with
tf
.
Graph
()
.
as_default
():
in_data
=
array_ops
.
placeholder
(
shape
=
data
.
shape
,
dtype
=
data
.
dtype
)
in_data
=
array_ops
.
placeholder
(
shape
=
data
.
shape
,
dtype
=
data
.
dtype
)
out
=
nn_ops
.
softmax
(
in_data
)
out
=
nn_ops
.
softmax
(
in_data
)
compare_tflite_with_tvm
(
data
,
data
,
'Placeholder:0'
,
[
in_data
],
[
out
])
compare_tflite_with_tvm
(
data
,
'Placeholder:0'
,
[
in_data
],
[
out
])
def
test_forward_softmax
():
def
test_forward_softmax
():
""" Softmax """
""" Softmax """
...
@@ -496,10 +421,8 @@ def _test_fully_connected(tensor_in_sizes, filter_in_sizes, bias_in_size=None):
...
@@ -496,10 +421,8 @@ def _test_fully_connected(tensor_in_sizes, filter_in_sizes, bias_in_size=None):
in_bias
=
constant_op
.
constant
(
bias_array
,
shape
=
bias_in_size
,
dtype
=
'float32'
)
in_bias
=
constant_op
.
constant
(
bias_array
,
shape
=
bias_in_size
,
dtype
=
'float32'
)
out
=
nn_ops
.
bias_add
(
out
,
in_bias
)
out
=
nn_ops
.
bias_add
(
out
,
in_bias
)
tflite_data_array
=
np
.
reshape
(
data_array
,
tensor_in_sizes
)
.
astype
(
'float32'
)
data_array
=
np
.
reshape
(
data_array
,
tensor_in_sizes
)
.
astype
(
'float32'
)
tvm_data_array
=
np
.
transpose
(
tflite_data_array
,
axes
=
(
0
,
3
,
1
,
2
))
compare_tflite_with_tvm
(
data_array
,
'Placeholder:0'
,
[
in_data
],
[
out
])
compare_tflite_with_tvm
(
tflite_data_array
,
tvm_data_array
,
'Placeholder:0'
,
[
in_data
],
[
out
])
def
test_forward_fully_connected
():
def
test_forward_fully_connected
():
...
@@ -523,9 +446,8 @@ def test_forward_mobilenet_v1():
...
@@ -523,9 +446,8 @@ def test_forward_mobilenet_v1():
with
open
(
tflite_model_file
,
"rb"
)
as
f
:
with
open
(
tflite_model_file
,
"rb"
)
as
f
:
tflite_model_buf
=
f
.
read
()
tflite_model_buf
=
f
.
read
()
data
=
np
.
random
.
uniform
(
size
=
(
1
,
224
,
224
,
3
))
.
astype
(
'float32'
)
data
=
np
.
random
.
uniform
(
size
=
(
1
,
224
,
224
,
3
))
.
astype
(
'float32'
)
tvm_data
=
np
.
transpose
(
data
,
axes
=
(
0
,
3
,
1
,
2
))
tflite_output
=
run_tflite_graph
(
tflite_model_buf
,
data
)
tflite_output
=
run_tflite_graph
(
tflite_model_buf
,
data
)
tvm_output
=
run_tvm_graph
(
tflite_model_buf
,
tvm_
data
,
'input'
)
tvm_output
=
run_tvm_graph
(
tflite_model_buf
,
data
,
'input'
)
tvm
.
testing
.
assert_allclose
(
np
.
squeeze
(
tvm_output
[
0
]),
np
.
squeeze
(
tflite_output
[
0
]),
tvm
.
testing
.
assert_allclose
(
np
.
squeeze
(
tvm_output
[
0
]),
np
.
squeeze
(
tflite_output
[
0
]),
rtol
=
1e-5
,
atol
=
1e-5
)
rtol
=
1e-5
,
atol
=
1e-5
)
...
@@ -538,9 +460,8 @@ def test_forward_mobilenet_v2():
...
@@ -538,9 +460,8 @@ def test_forward_mobilenet_v2():
with
open
(
tflite_model_file
,
"rb"
)
as
f
:
with
open
(
tflite_model_file
,
"rb"
)
as
f
:
tflite_model_buf
=
f
.
read
()
tflite_model_buf
=
f
.
read
()
data
=
np
.
random
.
uniform
(
size
=
(
1
,
224
,
224
,
3
))
.
astype
(
'float32'
)
data
=
np
.
random
.
uniform
(
size
=
(
1
,
224
,
224
,
3
))
.
astype
(
'float32'
)
tvm_data
=
np
.
transpose
(
data
,
axes
=
(
0
,
3
,
1
,
2
))
tflite_output
=
run_tflite_graph
(
tflite_model_buf
,
data
)
tflite_output
=
run_tflite_graph
(
tflite_model_buf
,
data
)
tvm_output
=
run_tvm_graph
(
tflite_model_buf
,
tvm_
data
,
'input'
)
tvm_output
=
run_tvm_graph
(
tflite_model_buf
,
data
,
'input'
)
tvm
.
testing
.
assert_allclose
(
np
.
squeeze
(
tvm_output
[
0
]),
np
.
squeeze
(
tflite_output
[
0
]),
tvm
.
testing
.
assert_allclose
(
np
.
squeeze
(
tvm_output
[
0
]),
np
.
squeeze
(
tflite_output
[
0
]),
rtol
=
1e-5
,
atol
=
1e-5
)
rtol
=
1e-5
,
atol
=
1e-5
)
...
@@ -557,9 +478,8 @@ def test_forward_inception_v3_net():
...
@@ -557,9 +478,8 @@ def test_forward_inception_v3_net():
with
open
(
tflite_model_file
,
"rb"
)
as
f
:
with
open
(
tflite_model_file
,
"rb"
)
as
f
:
tflite_model_buf
=
f
.
read
()
tflite_model_buf
=
f
.
read
()
data
=
np
.
random
.
uniform
(
size
=
(
1
,
299
,
299
,
3
))
.
astype
(
'float32'
)
data
=
np
.
random
.
uniform
(
size
=
(
1
,
299
,
299
,
3
))
.
astype
(
'float32'
)
tvm_data
=
np
.
transpose
(
data
,
axes
=
(
0
,
3
,
1
,
2
))
tflite_output
=
run_tflite_graph
(
tflite_model_buf
,
data
)
tflite_output
=
run_tflite_graph
(
tflite_model_buf
,
data
)
tvm_output
=
run_tvm_graph
(
tflite_model_buf
,
tvm_
data
,
'input'
)
tvm_output
=
run_tvm_graph
(
tflite_model_buf
,
data
,
'input'
)
tvm
.
testing
.
assert_allclose
(
np
.
squeeze
(
tvm_output
[
0
]),
np
.
squeeze
(
tflite_output
[
0
]),
tvm
.
testing
.
assert_allclose
(
np
.
squeeze
(
tvm_output
[
0
]),
np
.
squeeze
(
tflite_output
[
0
]),
rtol
=
1e-5
,
atol
=
1e-5
)
rtol
=
1e-5
,
atol
=
1e-5
)
...
@@ -572,9 +492,8 @@ def test_forward_inception_v4_net():
...
@@ -572,9 +492,8 @@ def test_forward_inception_v4_net():
with
open
(
tflite_model_file
,
"rb"
)
as
f
:
with
open
(
tflite_model_file
,
"rb"
)
as
f
:
tflite_model_buf
=
f
.
read
()
tflite_model_buf
=
f
.
read
()
data
=
np
.
random
.
uniform
(
size
=
(
1
,
299
,
299
,
3
))
.
astype
(
'float32'
)
data
=
np
.
random
.
uniform
(
size
=
(
1
,
299
,
299
,
3
))
.
astype
(
'float32'
)
tvm_data
=
np
.
transpose
(
data
,
axes
=
(
0
,
3
,
1
,
2
))
tflite_output
=
run_tflite_graph
(
tflite_model_buf
,
data
)
tflite_output
=
run_tflite_graph
(
tflite_model_buf
,
data
)
tvm_output
=
run_tvm_graph
(
tflite_model_buf
,
tvm_
data
,
'input'
)
tvm_output
=
run_tvm_graph
(
tflite_model_buf
,
data
,
'input'
)
tvm
.
testing
.
assert_allclose
(
np
.
squeeze
(
tvm_output
[
0
]),
np
.
squeeze
(
tflite_output
[
0
]),
tvm
.
testing
.
assert_allclose
(
np
.
squeeze
(
tvm_output
[
0
]),
np
.
squeeze
(
tflite_output
[
0
]),
rtol
=
1e-5
,
atol
=
1e-5
)
rtol
=
1e-5
,
atol
=
1e-5
)
...
...
tutorials/frontend/from_tflite.py
View file @
b63267b9
...
@@ -117,32 +117,23 @@ plt.imshow(resized_image)
...
@@ -117,32 +117,23 @@ plt.imshow(resized_image)
plt
.
show
()
plt
.
show
()
image_data
=
np
.
asarray
(
resized_image
)
.
astype
(
"float32"
)
image_data
=
np
.
asarray
(
resized_image
)
.
astype
(
"float32"
)
# convert HWC to CHW
# after expand_dims, we have format NHWC
image_data
=
image_data
.
transpose
((
2
,
0
,
1
))
# after expand_dims, we have format NCHW
image_data
=
np
.
expand_dims
(
image_data
,
axis
=
0
)
image_data
=
np
.
expand_dims
(
image_data
,
axis
=
0
)
# preprocess image as described here:
# preprocess image as described here:
# https://github.com/tensorflow/models/blob/edb6ed22a801665946c63d650ab9a0b23d98e1b1/research/slim/preprocessing/inception_preprocessing.py#L243
# https://github.com/tensorflow/models/blob/edb6ed22a801665946c63d650ab9a0b23d98e1b1/research/slim/preprocessing/inception_preprocessing.py#L243
image_data
[:,
0
,
:,
:]
=
2.0
/
255.0
*
image_data
[:,
0
,
:,
:
]
-
1
image_data
[:,
:,
:,
0
]
=
2.0
/
255.0
*
image_data
[:,
:,
:,
0
]
-
1
image_data
[:,
1
,
:,
:]
=
2.0
/
255.0
*
image_data
[:,
1
,
:,
:
]
-
1
image_data
[:,
:,
:,
1
]
=
2.0
/
255.0
*
image_data
[:,
:,
:,
1
]
-
1
image_data
[:,
2
,
:,
:]
=
2.0
/
255.0
*
image_data
[:,
2
,
:,
:
]
-
1
image_data
[:,
:,
:,
2
]
=
2.0
/
255.0
*
image_data
[:,
:,
:,
2
]
-
1
print
(
'input'
,
image_data
.
shape
)
print
(
'input'
,
image_data
.
shape
)
####################################################################
#
# .. note:: Input layout:
#
# Currently, TVM TFLite frontend accepts ``NCHW`` as input layout.
######################################################################
######################################################################
# Compile the model with relay
# Compile the model with relay
# ---------------------------------------------
# ---------------------------------------------
# TFLite input tensor name, shape and type
# TFLite input tensor name, shape and type
input_tensor
=
"input"
input_tensor
=
"input"
input_shape
=
(
1
,
3
,
224
,
224
)
input_shape
=
(
1
,
224
,
224
,
3
)
input_dtype
=
"float32"
input_dtype
=
"float32"
# parse TFLite model and convert into Relay computation graph
# parse TFLite model and convert into Relay computation graph
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment