Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
b577171d
Commit
b577171d
authored
Sep 16, 2019
by
Yao Wang
Committed by
Yizhi Liu
Sep 17, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Graph Tuner] Fix benchmark layout in graph tuner (#3926)
* Fix graph tuner benchmarking layout transform * Add test
parent
8577c81b
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
120 additions
and
0 deletions
+120
-0
python/tvm/autotvm/graph_tuner/base_graph_tuner.py
+4
-0
tests/python/unittest/test_graph_tuner_core.py
+116
-0
No files found.
python/tvm/autotvm/graph_tuner/base_graph_tuner.py
View file @
b577171d
...
@@ -243,6 +243,7 @@ class BaseGraphTuner(object):
...
@@ -243,6 +243,7 @@ class BaseGraphTuner(object):
transformation and is_valid showing whether this is a valid layout transformation.
transformation and is_valid showing whether this is a valid layout transformation.
"""
"""
input_names
=
self
.
_input_shapes
.
keys
()
input_names
=
self
.
_input_shapes
.
keys
()
pair_tracker
=
set
()
for
key
,
val
in
self
.
_in_nodes_dict
.
items
():
for
key
,
val
in
self
.
_in_nodes_dict
.
items
():
node_entry
=
self
.
_node_list
[
key
]
node_entry
=
self
.
_node_list
[
key
]
target_input_idx
=
-
1
target_input_idx
=
-
1
...
@@ -282,6 +283,9 @@ class BaseGraphTuner(object):
...
@@ -282,6 +283,9 @@ class BaseGraphTuner(object):
i_infer_layout_func
=
OP2LAYOUT
[
node_entry
[
"topi_op"
][
i
]]
i_infer_layout_func
=
OP2LAYOUT
[
node_entry
[
"topi_op"
][
i
]]
i_wkl
=
node_entry
[
"workloads"
][
i
]
i_wkl
=
node_entry
[
"workloads"
][
i
]
if
(
i_idx
,
o_idx
)
in
pair_tracker
:
continue
pair_tracker
.
add
((
i_idx
,
o_idx
))
for
m
,
i_record
in
enumerate
(
in_node_entry
[
"record_candidates"
]):
for
m
,
i_record
in
enumerate
(
in_node_entry
[
"record_candidates"
]):
for
n
,
o_record
in
enumerate
(
node_entry
[
"record_candidates"
]):
for
n
,
o_record
in
enumerate
(
node_entry
[
"record_candidates"
]):
...
...
tests/python/unittest/test_graph_tuner_core.py
View file @
b577171d
...
@@ -467,9 +467,125 @@ def test_tuple():
...
@@ -467,9 +467,125 @@ def test_tuple():
%
(
str
(
expected_out
),
str
(
out
))
%
(
str
(
expected_out
),
str
(
out
))
def
test_triangle_block
():
target
=
"llvm"
dtype
=
"float32"
dshape
=
(
1
,
3
,
8
,
8
)
layout
=
"NCHW"
target_ops
=
[
relay
.
nn
.
conv2d
]
data
=
relay
.
var
(
"data"
,
shape
=
dshape
,
dtype
=
dtype
)
w0
=
relay
.
var
(
"w0_weight"
)
conv0
=
relay
.
nn
.
conv2d
(
data
,
w0
,
channels
=
16
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
))
w1
=
relay
.
var
(
"w1_weight"
)
conv1
=
relay
.
nn
.
conv2d
(
conv0
,
w1
,
channels
=
32
,
kernel_size
=
(
1
,
1
))
w2
=
relay
.
var
(
"w2_weight"
)
conv2
=
relay
.
nn
.
conv2d
(
data
,
w2
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
))
out
=
relay
.
concatenate
([
conv0
,
conv1
,
conv2
],
axis
=
1
)
net
=
relay
.
Function
(
relay
.
analysis
.
free_vars
(
out
),
out
)
net
,
params
=
relay
.
testing
.
create_workload
(
net
)
tasks
=
autotvm
.
task
.
extract_from_program
(
net
[
"main"
],
target
=
target
,
params
=
params
,
ops
=
(
relay
.
op
.
nn
.
conv2d
,))
wkl_list
=
[
create_workload
((
1
,
3
,
8
,
8
),
(
16
,
3
,
3
,
3
),
(
1
,
1
),
(
1
,
1
),
(
1
,
1
),
layout
,
layout
,
dtype
,
dtype
),
create_workload
((
1
,
16
,
8
,
8
),
(
32
,
16
,
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
1
,
1
),
layout
,
layout
,
dtype
,
dtype
),
create_workload
((
1
,
3
,
8
,
8
),
(
32
,
3
,
3
,
3
),
(
1
,
1
),
(
1
,
1
),
(
1
,
1
),
layout
,
layout
,
dtype
,
dtype
),
]
costs
=
[
0.04
,
0.012
,
0.03
,
0.02
,
0.02
,
0.045
]
config_list
=
[]
cfg_dict
=
{
"i"
:
-
1
,
"c"
:
None
,
"e"
:
[[
"tile_ic"
,
"sp"
,
[
3
,
1
]],
[
"tile_oc"
,
"sp"
,
[
4
,
4
]],
[
"tile_ow"
,
"sp"
,
[
4
,
2
]],
[
"unroll_kw"
,
"ot"
,
True
]],
"t"
:
""
}
config_list
.
append
(
ConfigEntity
.
from_json_dict
(
cfg_dict
))
cfg_dict
=
{
"i"
:
-
1
,
"c"
:
None
,
"e"
:
[[
"tile_ic"
,
"sp"
,
[
2
,
8
]],
[
"tile_oc"
,
"sp"
,
[
1
,
32
]],
[
"tile_oh"
,
"ot"
,
1
],
[
"tile_ow"
,
"sp"
,
[
4
,
2
]]],
"t"
:
""
}
config_list
.
append
(
ConfigEntity
.
from_json_dict
(
cfg_dict
))
cfg_dict
=
{
"i"
:
-
1
,
"c"
:
None
,
"e"
:
[[
"tile_ic"
,
"sp"
,
[
8
,
4
]],
[
"tile_oc"
,
"sp"
,
[
4
,
8
]],
[
"tile_ow"
,
"sp"
,
[
2
,
4
]],
[
"unroll_kw"
,
"ot"
,
False
]],
"t"
:
""
}
config_list
.
append
(
ConfigEntity
.
from_json_dict
(
cfg_dict
))
cfg_dict
=
{
"i"
:
-
1
,
"c"
:
None
,
"e"
:
[[
"tile_ic"
,
"sp"
,
[
1
,
3
]],
[
"tile_oc"
,
"sp"
,
[
2
,
8
]],
[
"tile_ow"
,
"sp"
,
[
4
,
2
]],
[
"unroll_kw"
,
"ot"
,
True
]],
"t"
:
""
}
config_list
.
append
(
ConfigEntity
.
from_json_dict
(
cfg_dict
))
cfg_dict
=
{
"i"
:
-
1
,
"c"
:
None
,
"e"
:
[[
"tile_ic"
,
"sp"
,
[
4
,
4
]],
[
"tile_oc"
,
"sp"
,
[
2
,
16
]],
[
"tile_oh"
,
"ot"
,
1
],
[
"tile_ow"
,
"sp"
,
[
4
,
2
]]],
"t"
:
""
}
config_list
.
append
(
ConfigEntity
.
from_json_dict
(
cfg_dict
))
cfg_dict
=
{
"i"
:
-
1
,
"c"
:
None
,
"e"
:
[[
"tile_ic"
,
"sp"
,
[
16
,
2
]],
[
"tile_oc"
,
"sp"
,
[
8
,
4
]],
[
"tile_ow"
,
"sp"
,
[
2
,
4
]],
[
"unroll_kw"
,
"ot"
,
False
]],
"t"
:
""
}
config_list
.
append
(
ConfigEntity
.
from_json_dict
(
cfg_dict
))
records
=
[]
wkl_list
=
wkl_list
+
wkl_list
tasks
=
tasks
+
tasks
for
wkl
,
cost
,
config
,
task
in
zip
(
wkl_list
,
costs
,
config_list
,
tasks
):
task
.
workload
=
wkl
ms_input
=
MeasureInput
(
target
=
target
,
task
=
task
,
config
=
config
)
ms_output
=
MeasureResult
(
costs
=
(
cost
,),
error_no
=
0
,
all_cost
=-
1
,
timestamp
=-
1
)
records
.
append
((
ms_input
,
ms_output
))
ltf_records
=
[]
ltf_arg
=
[
tvm
.
placeholder
((
1
,
64
,
16
,
16
,
8
),
dtype
=
dtype
),
"NCHW8c"
,
"NCHW512c"
]
ltf_arg
=
autotvm
.
task
.
topi_integration
.
serialize_args
(
ltf_arg
)
ltf_wkl
=
(
'layout_transform'
,)
+
autotvm
.
task
.
args_to_workload
(
ltf_arg
)
ltf_task
=
copy
.
deepcopy
(
tasks
[
0
])
ltf_task
.
workload
=
ltf_wkl
ms_input
=
MeasureInput
(
target
=
target
,
task
=
ltf_task
,
config
=
None
)
ms_output
=
MeasureResult
(
costs
=
(
1.91224744e-05
,),
error_no
=
0
,
all_cost
=-
1
,
timestamp
=-
1
)
ltf_records
.
append
((
ms_input
,
ms_output
))
executor
=
DPTuner
(
net
,
{
"data"
:
dshape
},
records
,
target_ops
,
target
)
executor
.
benchmark_layout_transform
(
layout_records
=
ltf_records
,
infer_layout
=
True
)
executor
.
run
()
out
=
[
record
[
0
]
.
config
for
record
in
executor
.
get_optimal_records
()]
expected_out
=
[
records
[
3
][
0
]
.
config
,
records
[
1
][
0
]
.
config
,
records
[
2
][
0
]
.
config
]
assert
expected_out
==
out
,
"Output mismatch: expecting
%
s but got
%
s"
\
%
(
str
(
expected_out
),
str
(
out
))
executor
=
PBQPTuner
(
net
,
{
"data"
:
dshape
},
records
,
target_ops
,
target
)
executor
.
benchmark_layout_transform
(
layout_records
=
ltf_records
,
infer_layout
=
True
)
executor
.
run
()
out
=
[
record
[
0
]
.
config
for
record
in
executor
.
get_optimal_records
()]
expected_out
=
[
records
[
3
][
0
]
.
config
,
records
[
1
][
0
]
.
config
,
records
[
2
][
0
]
.
config
]
assert
expected_out
==
out
,
"Output mismatch: expecting
%
s but got
%
s"
\
%
(
str
(
expected_out
),
str
(
out
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
test_graph_tuner_layout_transform
()
test_graph_tuner_layout_transform
()
test_DPTuner_run
()
test_DPTuner_run
()
test_PBQPTuner_run
()
test_PBQPTuner_run
()
test_many_sub_graphs
()
test_many_sub_graphs
()
test_tuple
()
test_tuple
()
test_triangle_block
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment