Commit b1cf70a8 by Siju Committed by Tianqi Chen

[RELAY]Testing Inception, Squeezenet, VGG port (#2013)

parent 53ac89ed
......@@ -7,4 +7,7 @@ from . import dqn
from . import dcgan
from . import mobilenet
from . import lstm
from . import inception_v3
from . import squeezenet
from . import vgg
from .config import ctx_list
"""
Inception V3, suitable for images with around 299 x 299
Reference:
Szegedy, Christian, et al. "Rethinking the Inception Architecture for Computer Vision."
arXiv preprint arXiv:1512.00567 (2015).
Adopted from https://github.com/apache/incubator-mxnet/blob/
master/example/image-classification/symbols/inception-v3.py
"""
# pylint: disable=invalid-name,missing-docstring,unused-argument
from tvm import relay
from .init import create_workload
from . import layers
def Conv(data, num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), name=None, suffix=''):
conv = layers.conv2d(
data=data,
channels=int(num_filter),
kernel_size=kernel,
strides=stride,
padding=pad,
name='%s%s_conv1' % (name, suffix))
bn = layers.batch_norm_infer(data=conv, epsilon=2e-5, name='%s%s_bn' % (name, suffix))
act = relay.nn.relu(data=bn)
return act
def Pooling(data, kernel, stride, pad, pool_type, name):
if pool_type == 'max':
return relay.nn.max_pool2d(data=data, pool_size=kernel, strides=stride, padding=pad)
elif pool_type == 'avg':
return relay.nn.avg_pool2d(data=data, pool_size=kernel, strides=stride, padding=pad,
count_include_pad=True)
else:
raise ValueError("Invalid pooling type: " + pool_type)
def Inception7A(data,
num_1x1,
num_3x3_red, num_3x3_1, num_3x3_2,
num_5x5_red, num_5x5,
pool, proj,
name):
tower_1x1 = Conv(data, num_1x1, name=('%s_conv' % name))
tower_5x5 = Conv(data, num_5x5_red, name=('%s_tower' % name), suffix='_conv')
tower_5x5 = Conv(tower_5x5, num_5x5, kernel=(5, 5), pad=(2, 2), name=('%s_tower' % name),
suffix='_conv_1')
tower_3x3 = Conv(data, num_3x3_red, name=('%s_tower_1' % name), suffix='_conv')
tower_3x3 = Conv(tower_3x3, num_3x3_1, kernel=(3, 3), pad=(1, 1), name=('%s_tower_1' % name),
suffix='_conv_1')
tower_3x3 = Conv(tower_3x3, num_3x3_2, kernel=(3, 3), pad=(1, 1), name=('%s_tower_1' % name),
suffix='_conv_2')
pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool,
name=('%s_pool_%s_pool' % (pool, name)))
cproj = Conv(pooling, proj, name=('%s_tower_2' % name), suffix='_conv')
concat = relay.concatenate((tower_1x1, tower_5x5, tower_3x3, cproj), axis=0)
return concat
# First Downsample
def Inception7B(data,
num_3x3,
num_d3x3_red, num_d3x3_1, num_d3x3_2,
pool,
name):
tower_3x3 = Conv(data, num_3x3, kernel=(3, 3), pad=(0, 0), stride=(2, 2),
name=('%s_conv' % name))
tower_d3x3 = Conv(data, num_d3x3_red, name=('%s_tower' % name), suffix='_conv')
tower_d3x3 = Conv(tower_d3x3, num_d3x3_1, kernel=(3, 3), pad=(1, 1), stride=(1, 1),
name=('%s_tower' % name), suffix='_conv_1')
tower_d3x3 = Conv(tower_d3x3, num_d3x3_2, kernel=(3, 3), pad=(0, 0), stride=(2, 2),
name=('%s_tower' % name), suffix='_conv_2')
pooling = Pooling(data=data, kernel=(3, 3), stride=(2, 2), pad=(0, 0), pool_type="max",
name=('max_pool_%s_pool' % name))
concat = relay.concatenate((tower_3x3, tower_d3x3, pooling), axis=0)
return concat
def Inception7C(data,
num_1x1,
num_d7_red, num_d7_1, num_d7_2,
num_q7_red, num_q7_1, num_q7_2, num_q7_3, num_q7_4,
pool, proj,
name):
tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_conv' % name))
tower_d7 = Conv(data=data, num_filter=num_d7_red, name=('%s_tower' % name), suffix='_conv')
tower_d7 = Conv(data=tower_d7, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3),
name=('%s_tower' % name), suffix='_conv_1')
tower_d7 = Conv(data=tower_d7, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0),
name=('%s_tower' % name), suffix='_conv_2')
tower_q7 = Conv(data=data, num_filter=num_q7_red, name=('%s_tower_1' % name), suffix='_conv')
tower_q7 = Conv(data=tower_q7, num_filter=num_q7_1, kernel=(7, 1), pad=(3, 0),
name=('%s_tower_1' % name), suffix='_conv_1')
tower_q7 = Conv(data=tower_q7, num_filter=num_q7_2, kernel=(1, 7), pad=(0, 3),
name=('%s_tower_1' % name), suffix='_conv_2')
tower_q7 = Conv(data=tower_q7, num_filter=num_q7_3, kernel=(7, 1), pad=(3, 0),
name=('%s_tower_1' % name), suffix='_conv_3')
tower_q7 = Conv(data=tower_q7, num_filter=num_q7_4, kernel=(1, 7), pad=(0, 3),
name=('%s_tower_1' % name), suffix='_conv_4')
pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool,
name=('%s_pool_%s_pool' % (pool, name)))
cproj = Conv(data=pooling, num_filter=proj, kernel=(1, 1),
name=('%s_tower_2' % name), suffix='_conv')
# concat
concat = relay.concatenate((tower_1x1, tower_d7, tower_q7, cproj), axis=0)
return concat
def Inception7D(data,
num_3x3_red, num_3x3,
num_d7_3x3_red, num_d7_1, num_d7_2, num_d7_3x3,
pool,
name):
tower_3x3 = Conv(data=data, num_filter=num_3x3_red, name=('%s_tower' % name),
suffix='_conv')
tower_3x3 = Conv(data=tower_3x3, num_filter=num_3x3, kernel=(3, 3), pad=(0, 0), stride=(2, 2),
name=('%s_tower' % name), suffix='_conv_1')
tower_d7_3x3 = Conv(data=data, num_filter=num_d7_3x3_red, name=('%s_tower_1' % name),
suffix='_conv')
tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3),
name=('%s_tower_1' % name), suffix='_conv_1')
tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0),
name=('%s_tower_1' % name), suffix='_conv_2')
tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_3x3, kernel=(3, 3), stride=(2, 2),
name=('%s_tower_1' % name), suffix='_conv_3')
pooling = Pooling(data=data, kernel=(3, 3), stride=(2, 2), pool_type=pool, pad=(0, 0),
name=('%s_pool_%s_pool' % (pool, name)))
# concat
concat = relay.concatenate((tower_3x3, tower_d7_3x3, pooling), axis=0)
return concat
def Inception7E(data,
num_1x1,
num_d3_red, num_d3_1, num_d3_2,
num_3x3_d3_red, num_3x3, num_3x3_d3_1, num_3x3_d3_2,
pool, proj,
name):
tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_conv' % name))
tower_d3 = Conv(data=data, num_filter=num_d3_red, name=('%s_tower' % name), suffix='_conv')
tower_d3_a = Conv(data=tower_d3, num_filter=num_d3_1, kernel=(1, 3), pad=(0, 1),
name=('%s_tower' % name), suffix='_mixed_conv')
tower_d3_b = Conv(data=tower_d3, num_filter=num_d3_2, kernel=(3, 1), pad=(1, 0),
name=('%s_tower' % name), suffix='_mixed_conv_1')
tower_3x3_d3 = Conv(data=data, num_filter=num_3x3_d3_red, name=('%s_tower_1' % name),
suffix='_conv')
tower_3x3_d3 = Conv(data=tower_3x3_d3, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1),
name=('%s_tower_1' % name), suffix='_conv_1')
tower_3x3_d3_a = Conv(data=tower_3x3_d3, num_filter=num_3x3_d3_1, kernel=(1, 3), pad=(0, 1),
name=('%s_tower_1' % name), suffix='_mixed_conv')
tower_3x3_d3_b = Conv(data=tower_3x3_d3, num_filter=num_3x3_d3_2, kernel=(3, 1), pad=(1, 0),
name=('%s_tower_1' % name), suffix='_mixed_conv_1')
pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool,
name=('%s_pool_%s_pool' % (pool, name)))
cproj = Conv(data=pooling, num_filter=proj, kernel=(1, 1), name=('%s_tower_2' % name),
suffix='_conv')
# concat
concat = relay.concatenate(
(tower_1x1, tower_d3_a, tower_d3_b, tower_3x3_d3_a, tower_3x3_d3_b, cproj), axis=0)
return concat
def get_net(batch_size,
num_classes,
image_shape,
dtype):
"""Get network a Inception v3 network.
batch_size : int
The batch size used in the model
num_classes : int, optional
Number of claseses
image_shape : tuple, optional
The input image shape
dtype : str, optional
The data type
Returns
-------
net : relay.Function
The dataflow.
"""
data_shape = (batch_size,) + image_shape
data = relay.var("data",
shape=data_shape,
dtype=dtype)
# stage 1
conv = Conv(data, 32, kernel=(3, 3), stride=(2, 2), name="conv")
conv_1 = Conv(conv, 32, kernel=(3, 3), name="conv_1")
conv_2 = Conv(conv_1, 64, kernel=(3, 3), pad=(1, 1), name="conv_2")
pool = Pooling(data=conv_2, kernel=(3, 3), stride=(2, 2), pool_type="max", pad=(0, 0),
name="pool")
# stage 2
conv_3 = Conv(pool, 80, kernel=(1, 1), name="conv_3")
conv_4 = Conv(conv_3, 192, kernel=(3, 3), name="conv_4")
pool1 = Pooling(data=conv_4, kernel=(3, 3), stride=(2, 2), pool_type="max", pad=(0, 0),
name="pool1")
# stage 3
in3a = Inception7A(pool1, 64,
64, 96, 96,
48, 64,
"avg", 32, "mixed")
in3b = Inception7A(in3a, 64,
64, 96, 96,
48, 64,
"avg", 64, "mixed_1")
in3c = Inception7A(in3b, 64,
64, 96, 96,
48, 64,
"avg", 64, "mixed_2")
in3d = Inception7B(in3c, 384,
64, 96, 96,
"max", "mixed_3")
# stage 4
in4a = Inception7C(in3d, 192,
128, 128, 192,
128, 128, 128, 128, 192,
"avg", 192, "mixed_4")
in4b = Inception7C(in4a, 192,
160, 160, 192,
160, 160, 160, 160, 192,
"avg", 192, "mixed_5")
in4c = Inception7C(in4b, 192,
160, 160, 192,
160, 160, 160, 160, 192,
"avg", 192, "mixed_6")
in4d = Inception7C(in4c, 192,
192, 192, 192,
192, 192, 192, 192, 192,
"avg", 192, "mixed_7")
in4e = Inception7D(in4d, 192, 320,
192, 192, 192, 192,
"max", "mixed_8")
# stage 5
in5a = Inception7E(in4e, 320,
384, 384, 384,
448, 384, 384, 384,
"avg", 192, "mixed_9")
in5b = Inception7E(in5a, 320,
384, 384, 384,
448, 384, 384, 384,
"max", 192, "mixed_10")
# pool
pool = Pooling(data=in5b, kernel=(8, 8), stride=(1, 1), pool_type="avg", pad=(0, 0),
name="global_pool")
flatten = relay.nn.batch_flatten(pool)
fc1 = relay.nn.dense(flatten, relay.var("fc1_weight"), units=num_classes)
fc1 = relay.nn.bias_add(fc1, relay.var("fc2_bias"))
inception_v3 = relay.nn.softmax(data=fc1)
args = relay.ir_pass.free_vars(inception_v3)
return relay.Function(args, inception_v3)
def get_workload(batch_size=1, num_classes=1000,
image_shape=(3, 299, 299), dtype="float32"):
"""Get benchmark workload for InceptionV3
Parameters
----------
batch_size : int
The batch size used in the model
num_classes : int, optional
Number of classes
image_shape : tuple, optional
The input image shape
dtype : str, optional
The data type
Returns
-------
net : nnvm.Symbol
The computational graph
params : dict of str to NDArray
The parameters.
"""
net = get_net(batch_size, num_classes, image_shape, dtype)
return create_workload(net)
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# coding: utf-8
# pylint: disable=unused-argument
"""
Symbol of SqueezeNet
Reference:
Iandola, Forrest N., et al.
"Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." (2016).
"""
from tvm import relay
from .init import create_workload
from . import layers
# Helpers
def _make_fire(net, squeeze_channels, expand1x1_channels, expand3x3_channels):
net = _make_fire_conv(net, squeeze_channels, 1, 0)
left = _make_fire_conv(net, expand1x1_channels, 1, 0)
right = _make_fire_conv(net, expand3x3_channels, 3, 1)
# NOTE : Assume NCHW layout here
net = relay.concatenate((left, right), axis=1)
return net
def _make_fire_conv(net, channels, kernel_size, padding=0):
net = layers.conv2d(net, channels=channels, kernel_size=(kernel_size, kernel_size),
padding=(padding, padding), name="conv2d")
net = relay.nn.relu(net)
return net
# Net
def get_net(batch_size, image_shape, num_classes, version, dtype):
"""Get symbol of SqueezeNet
Parameters
----------
batch_size : int
The batch size used in the model
image_shape : tuple, optional
The input image shape
num_classes: int
The number of classification results
version : str, optional
"1.0" or "1.1" of SqueezeNet
"""
assert version in ['1.0', '1.1'], ("Unsupported SqueezeNet version {version}:"
"1.0 or 1.1 expected".format(version=version))
data_shape = (batch_size,) + image_shape
net = relay.var("data", shape=data_shape, dtype=dtype)
if version == '1.0':
net = layers.conv2d(net,
channels=96,
kernel_size=(7, 7),
strides=(2, 2),
padding=(3, 3),
name="conv2d")
net = relay.nn.bias_add(net, relay.var("dense1_bias"))
net = relay.nn.relu(net)
net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
net = _make_fire(net, 16, 64, 64)
net = _make_fire(net, 16, 64, 64)
net = _make_fire(net, 32, 128, 128)
net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
net = _make_fire(net, 32, 128, 128)
net = _make_fire(net, 48, 192, 192)
net = _make_fire(net, 48, 192, 192)
net = _make_fire(net, 64, 256, 256)
net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
net = _make_fire(net, 64, 256, 256)
else:
net = layers.conv2d(net,
channels=64,
kernel_size=(3, 3),
strides=(2, 2),
padding=(1, 1),
name="conv2d")
net = relay.nn.relu(net)
net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
net = _make_fire(net, 16, 64, 64)
net = _make_fire(net, 16, 64, 64)
net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
net = _make_fire(net, 32, 128, 128)
net = _make_fire(net, 32, 128, 128)
net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
net = _make_fire(net, 48, 192, 192)
net = _make_fire(net, 48, 192, 192)
net = _make_fire(net, 64, 256, 256)
net = _make_fire(net, 64, 256, 256)
net = relay.nn.dropout(net, rate=0.5)
net = layers.conv2d(net, channels=num_classes, kernel_size=(1, 1), name="conv2d")
net = relay.nn.relu(net)
net = relay.nn.global_avg_pool2d(net)
net = relay.nn.batch_flatten(net)
net = relay.nn.softmax(net)
args = relay.ir_pass.free_vars(net)
return relay.Function(args, net)
def get_workload(batch_size=1, num_classes=1000, version='1.0',
image_shape=(3, 224, 224), dtype="float32"):
"""Get benchmark workload for SqueezeNet
Parameters
----------
batch_size : int
The batch size used in the model
num_classes : int, optional
Number of classes
version : str, optional
"1.0" or "1.1" of SqueezeNet
image_shape : tuple, optional
The input image shape
dtype : str, optional
The data type
Returns
-------
net : nnvm.Symbol
The computational graph
params : dict of str to NDArray
The parameters.
"""
net = get_net(batch_size, image_shape, num_classes, version, dtype)
return create_workload(net)
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""References:
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for
large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
"""
from tvm import relay
from .init import create_workload
from . import layers as wrapper
def get_feature(internel_layer, layers, filters, batch_norm=False):
"""Get VGG feature body as stacks of convoltions."""
for i, num in enumerate(layers):
for j in range(num):
internel_layer = wrapper.conv2d(
data=internel_layer, kernel_size=(3, 3), padding=(1, 1),
channels=filters[i], name="conv%s_%s"%(i + 1, j + 1))
if batch_norm:
internel_layer = wrapper.batch_norm_infer(
data=internel_layer, name="bn%s_%s" %(i + 1, j + 1))
internel_layer = relay.nn.relu(data=internel_layer)
internel_layer = relay.nn.max_pool2d(
data=internel_layer, pool_size=(2, 2), strides=(2, 2))
return internel_layer
def get_classifier(input_data, num_classes):
"""Get VGG classifier layers as fc layers."""
flatten = relay.nn.batch_flatten(data=input_data)
fc6 = wrapper.dense_add_bias(data=flatten, units=4096, name="fc6")
relu6 = relay.nn.relu(data=fc6)
drop6 = relay.nn.dropout(data=relu6, rate=0.5)
fc7 = wrapper.dense_add_bias(data=drop6, units=4096, name="fc7")
relu7 = relay.nn.relu(data=fc7)
drop7 = relay.nn.dropout(data=relu7, rate=0.5)
fc8 = wrapper.dense_add_bias(data=drop7, units=num_classes, name="fc8")
return fc8
def get_net(batch_size, image_shape, num_classes, dtype, num_layers=11, batch_norm=False):
"""
Parameters
----------
batch_size : int
The batch size used in the model
image_shape : tuple, optional
The input image shape
num_classes : int, optional
Number of claseses
dtype : str, optional
The data type
num_layers : int
Number of layers for the variant of densenet. Options are 11, 13, 16, 19.
batch_norm : bool, default False
Use batch normalization.
"""
vgg_spec = {11: ([1, 1, 2, 2, 2], [64, 128, 256, 512, 512]),
13: ([2, 2, 2, 2, 2], [64, 128, 256, 512, 512]),
16: ([2, 2, 3, 3, 3], [64, 128, 256, 512, 512]),
19: ([2, 2, 4, 4, 4], [64, 128, 256, 512, 512])}
if num_layers not in vgg_spec:
raise ValueError("Invalide num_layers {}. Choices are 11,13,16,19.".format(num_layers))
layers, filters = vgg_spec[num_layers]
data_shape = (batch_size,) + image_shape
data = relay.var("data", shape=data_shape, dtype=dtype)
feature = get_feature(data, layers, filters, batch_norm)
classifier = get_classifier(feature, num_classes)
symbol = relay.nn.softmax(data=classifier)
args = relay.ir_pass.free_vars(symbol)
return relay.Function(args, symbol)
def get_workload(batch_size, num_classes=1000, image_shape=(3, 224, 224), dtype="float32"):
"""Get benchmark workload for VGG nets.
Parameters
----------
batch_size : int
The batch size used in the model
num_classes : int, optional
Number of claseses
image_shape : tuple, optional
The input image shape
dtype : str, optional
The data type
Returns
-------
net : nnvm.Symbol
The computational graph
params : dict of str to NDArray
The parameters.
"""
net = get_net(batch_size, image_shape, num_classes, dtype)
return create_workload(net)
......@@ -124,6 +124,18 @@ def test_lstm():
net, params = tvm.relay.testing.lstm.get_workload(4, 4)
net.astext()
def test_inception_v3():
net, params = tvm.relay.testing.inception_v3.get_workload(batch_size=1)
net.astext()
def test_squeezenet():
for version in ['1.0', '1.1']:
net, params = tvm.relay.testing.squeezenet.get_workload(batch_size=1, version=version)
net.astext()
def test_vgg():
net, params = tvm.relay.testing.vgg.get_workload(batch_size=1)
net.astext()
if __name__ == "__main__":
do_print[0] = True
......@@ -132,6 +144,9 @@ if __name__ == "__main__":
test_mlp()
test_dqn()
test_dcgan()
test_squeezenet()
test_inception_v3()
test_vgg()
test_func()
test_env()
test_meta_data()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment