Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
a9e0567d
Commit
a9e0567d
authored
Aug 26, 2018
by
Siju
Committed by
Yizhi Liu
Aug 25, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[FRONTEND][ONNX]HardSigmoid, min, max, mean ops support (#1645)
parent
a03c60ba
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
176 additions
and
5 deletions
+176
-5
nnvm/python/nnvm/frontend/onnx.py
+51
-5
nnvm/tests/python/frontend/onnx/test_forward.py
+125
-0
No files found.
nnvm/python/nnvm/frontend/onnx.py
View file @
a9e0567d
...
@@ -529,6 +529,53 @@ class LRN(OnnxOpConverter):
...
@@ -529,6 +529,53 @@ class LRN(OnnxOpConverter):
return
_sym
.
lrn
(
inputs
[
0
],
size
=
nsize
,
axis
=
axis
,
return
_sym
.
lrn
(
inputs
[
0
],
size
=
nsize
,
axis
=
axis
,
alpha
=
alpha
,
beta
=
beta
,
bias
=
bias
)
alpha
=
alpha
,
beta
=
beta
,
bias
=
bias
)
class
Maximum
(
OnnxOpConverter
):
""" Operator converter for Maximum.
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
if
not
isinstance
(
inputs
,
list
)
or
len
(
inputs
)
<
2
:
raise
ValueError
(
"Expect minimum 2 inputs"
)
_max
=
inputs
[
0
]
for
i
in
range
(
1
,
len
(
inputs
)):
_max
=
AttrCvt
(
op_name
=
'broadcast_max'
)([
_max
,
inputs
[
i
]],
{})
return
_max
class
Minimum
(
OnnxOpConverter
):
""" Operator converter for Minimum.
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
if
not
isinstance
(
inputs
,
list
)
or
len
(
inputs
)
<
2
:
raise
ValueError
(
"Expect minimum 2 inputs"
)
_min
=
inputs
[
0
]
for
i
in
range
(
1
,
len
(
inputs
)):
_min
=
AttrCvt
(
op_name
=
'broadcast_min'
)([
_min
,
inputs
[
i
]],
{})
return
_min
class
Mean
(
OnnxOpConverter
):
""" Operator converter for Mean.
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
if
not
isinstance
(
inputs
,
list
)
or
len
(
inputs
)
<
2
:
raise
ValueError
(
"Expect minimum 2 inputs"
)
count
=
len
(
inputs
)
_sum
=
inputs
[
0
]
for
i
in
range
(
1
,
count
):
_sum
=
AttrCvt
(
op_name
=
'broadcast_add'
)([
_sum
,
inputs
[
i
]],
{})
return
_sum
/
count
class
HardSigmoid
(
OnnxOpConverter
):
""" Operator converter for HardSigmoid.
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
alpha
=
attr
.
get
(
'alpha'
,
0.2
)
beta
=
attr
.
get
(
'beta'
,
0.5
)
transformX
=
(
inputs
[
0
]
*
alpha
)
+
beta
attr
=
{
'a_min'
:
0
,
'a_max'
:
1
}
return
AttrCvt
(
op_name
=
'clip'
)([
transformX
],
attr
)
# compatible operators that do NOT require any conversion.
# compatible operators that do NOT require any conversion.
_identity_list
=
[]
_identity_list
=
[]
...
@@ -557,7 +604,6 @@ def _get_convert_map(opset):
...
@@ -557,7 +604,6 @@ def _get_convert_map(opset):
# 'MeanVarianceNormalization'
# 'MeanVarianceNormalization'
# 'Crop'
# 'Crop'
# 'Embedding'
# 'Embedding'
# 'Upsample'
'Upsample'
:
Upsample
.
get_converter
(
opset
),
'Upsample'
:
Upsample
.
get_converter
(
opset
),
'SpatialBN'
:
BatchNorm
.
get_converter
(
opset
),
'SpatialBN'
:
BatchNorm
.
get_converter
(
opset
),
...
@@ -591,11 +637,11 @@ def _get_convert_map(opset):
...
@@ -591,11 +637,11 @@ def _get_convert_map(opset):
'Pow'
:
Renamer
(
'broadcast_pow'
),
'Pow'
:
Renamer
(
'broadcast_pow'
),
'PRelu'
:
Prelu
.
get_converter
(
opset
),
'PRelu'
:
Prelu
.
get_converter
(
opset
),
'Sigmoid'
:
Renamer
(
'sigmoid'
),
'Sigmoid'
:
Renamer
(
'sigmoid'
),
# 'HardSigmoid'
'HardSigmoid'
:
HardSigmoid
.
get_converter
(
opset
),
# 'Max' : this is the elemwise maximum
'Max'
:
Maximum
.
get_converter
(
opset
),
# 'Min' : this is the elemwise minimum
'Min'
:
Minimum
.
get_converter
(
opset
),
'Sum'
:
Sum
.
get_converter
(
opset
),
'Sum'
:
Sum
.
get_converter
(
opset
),
# 'Mean'
'Mean'
:
Mean
.
get_converter
(
opset
),
'Clip'
:
AttrCvt
(
'clip'
,
transforms
=
{
'min'
:
'a_min'
,
'max'
:
'a_max'
}),
'Clip'
:
AttrCvt
(
'clip'
,
transforms
=
{
'min'
:
'a_min'
,
'max'
:
'a_max'
}),
# softmax default axis is different in onnx
# softmax default axis is different in onnx
'Softmax'
:
AttrCvt
(
'softmax'
,
{
'axis'
:
(
'axis'
,
1
)}),
'Softmax'
:
AttrCvt
(
'softmax'
,
{
'axis'
:
(
'axis'
,
1
)}),
...
...
nnvm/tests/python/frontend/onnx/test_forward.py
View file @
a9e0567d
...
@@ -426,6 +426,127 @@ def test_upsample():
...
@@ -426,6 +426,127 @@ def test_upsample():
_test_upsample_nearest
()
_test_upsample_nearest
()
_test_upsample_bilinear
()
_test_upsample_bilinear
()
def
verify_min
(
input_dim
):
dtype
=
'float32'
a_np1
=
np
.
random
.
uniform
(
size
=
input_dim
)
.
astype
(
dtype
)
a_np2
=
np
.
random
.
uniform
(
size
=
input_dim
)
.
astype
(
dtype
)
a_np3
=
np
.
random
.
uniform
(
size
=
input_dim
)
.
astype
(
dtype
)
b_np
=
np
.
min
((
a_np1
,
a_np2
,
a_np3
),
axis
=
0
)
min_node
=
helper
.
make_node
(
"Min"
,
[
"a_np1"
,
"a_np2"
,
"a_np3"
],
[
"out"
])
graph
=
helper
.
make_graph
([
min_node
],
"Min_test"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"a_np1"
,
TensorProto
.
FLOAT
,
list
(
input_dim
)),
helper
.
make_tensor_value_info
(
"a_np2"
,
TensorProto
.
FLOAT
,
list
(
input_dim
)),
helper
.
make_tensor_value_info
(
"a_np3"
,
TensorProto
.
FLOAT
,
list
(
input_dim
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
b_np
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'Min_test'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
[
a_np1
,
a_np2
,
a_np3
],
target
,
ctx
,
b_np
.
shape
)
np
.
testing
.
assert_allclose
(
b_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_forward_min
():
verify_min
((
1
,
3
,
20
,
20
))
verify_min
((
20
,
20
))
def
verify_max
(
input_dim
):
dtype
=
'float32'
a_np1
=
np
.
random
.
uniform
(
size
=
input_dim
)
.
astype
(
dtype
)
a_np2
=
np
.
random
.
uniform
(
size
=
input_dim
)
.
astype
(
dtype
)
a_np3
=
np
.
random
.
uniform
(
size
=
input_dim
)
.
astype
(
dtype
)
b_np
=
np
.
max
((
a_np1
,
a_np2
,
a_np3
),
axis
=
0
)
max_node
=
helper
.
make_node
(
"Max"
,
[
"a_np1"
,
"a_np2"
,
"a_np3"
],
[
"out"
])
graph
=
helper
.
make_graph
([
max_node
],
"Max_test"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"a_np1"
,
TensorProto
.
FLOAT
,
list
(
input_dim
)),
helper
.
make_tensor_value_info
(
"a_np2"
,
TensorProto
.
FLOAT
,
list
(
input_dim
)),
helper
.
make_tensor_value_info
(
"a_np3"
,
TensorProto
.
FLOAT
,
list
(
input_dim
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
b_np
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'Max_test'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
[
a_np1
,
a_np2
,
a_np3
],
target
,
ctx
,
b_np
.
shape
)
np
.
testing
.
assert_allclose
(
b_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_forward_max
():
verify_max
((
1
,
3
,
20
,
20
))
verify_max
((
20
,
20
))
def
verify_mean
(
input_dim
):
dtype
=
'float32'
a_np1
=
np
.
random
.
uniform
(
size
=
input_dim
)
.
astype
(
dtype
)
a_np2
=
np
.
random
.
uniform
(
size
=
input_dim
)
.
astype
(
dtype
)
a_np3
=
np
.
random
.
uniform
(
size
=
input_dim
)
.
astype
(
dtype
)
b_np
=
np
.
mean
((
a_np1
,
a_np2
,
a_np3
),
axis
=
0
)
mean_node
=
helper
.
make_node
(
"Mean"
,
[
"a_np1"
,
"a_np2"
,
"a_np3"
],
[
"out"
])
graph
=
helper
.
make_graph
([
mean_node
],
"Mean_test"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"a_np1"
,
TensorProto
.
FLOAT
,
list
(
input_dim
)),
helper
.
make_tensor_value_info
(
"a_np2"
,
TensorProto
.
FLOAT
,
list
(
input_dim
)),
helper
.
make_tensor_value_info
(
"a_np3"
,
TensorProto
.
FLOAT
,
list
(
input_dim
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
b_np
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'Mean_test'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
[
a_np1
,
a_np2
,
a_np3
],
target
,
ctx
,
b_np
.
shape
)
np
.
testing
.
assert_allclose
(
b_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_forward_mean
():
verify_mean
((
1
,
3
,
20
,
20
))
verify_mean
((
20
,
20
))
def
verify_hardsigmoid
(
input_dim
,
alpha
,
beta
):
dtype
=
'float32'
a_np1
=
np
.
random
.
uniform
(
size
=
input_dim
)
.
astype
(
dtype
)
b_np
=
np
.
clip
(
a_np1
*
alpha
+
beta
,
0
,
1
)
hardsigmoid_node
=
helper
.
make_node
(
"HardSigmoid"
,
[
"a_np1"
],
[
"out"
],
alpha
=
alpha
,
beta
=
beta
)
graph
=
helper
.
make_graph
([
hardsigmoid_node
],
"HardSigmoid_test"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"a_np1"
,
TensorProto
.
FLOAT
,
list
(
input_dim
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
b_np
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'HardSigmoid_test'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
[
a_np1
],
target
,
ctx
,
b_np
.
shape
)
np
.
testing
.
assert_allclose
(
b_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_forward_hardsigmoid
():
verify_hardsigmoid
((
1
,
3
,
20
,
20
),
0.5
,
0.6
)
verify_hardsigmoid
((
20
,
20
),
0.3
,
0.4
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
# verify_super_resolution_example()
# verify_super_resolution_example()
...
@@ -445,3 +566,7 @@ if __name__ == '__main__':
...
@@ -445,3 +566,7 @@ if __name__ == '__main__':
test_gather
()
test_gather
()
test_lrn
()
test_lrn
()
test_upsample
()
test_upsample
()
test_forward_min
()
test_forward_max
()
test_forward_mean
()
test_forward_hardsigmoid
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment