Commit a9bd5593 by Haichen Shen Committed by Yizhi Liu

[X86][TOPI] Add AutoTVM template for dense (#2392)

* Add GEMM autotvm template for x86

* Fix tophub link

* Disable RPC server logging file delete

* Update dense autotvm template

* Fix tests

* Fix lint

* tweak

* Register two templates with different tags
parent 2fbc82e6
...@@ -40,6 +40,7 @@ List of operators ...@@ -40,6 +40,7 @@ List of operators
topi.nn.global_pool topi.nn.global_pool
topi.nn.upsampling topi.nn.upsampling
topi.nn.softmax topi.nn.softmax
topi.nn.dense
topi.nn.log_softmax topi.nn.log_softmax
topi.nn.conv2d_nchw topi.nn.conv2d_nchw
topi.nn.conv2d_hwcn topi.nn.conv2d_hwcn
...@@ -132,6 +133,7 @@ topi.nn ...@@ -132,6 +133,7 @@ topi.nn
.. autofunction:: topi.nn.global_pool .. autofunction:: topi.nn.global_pool
.. autofunction:: topi.nn.upsampling .. autofunction:: topi.nn.upsampling
.. autofunction:: topi.nn.softmax .. autofunction:: topi.nn.softmax
.. autofunction:: topi.nn.dense
.. autofunction:: topi.nn.log_softmax .. autofunction:: topi.nn.log_softmax
.. autofunction:: topi.nn.conv2d_nchw .. autofunction:: topi.nn.conv2d_nchw
.. autofunction:: topi.nn.conv2d_hwcn .. autofunction:: topi.nn.conv2d_hwcn
......
...@@ -136,7 +136,7 @@ def download_package(package_name): ...@@ -136,7 +136,7 @@ def download_package(package_name):
os.mkdir(path) os.mkdir(path)
logger.info("Download pre-tuned parameters package %s", package_name) logger.info("Download pre-tuned parameters package %s", package_name)
download("https://raw.githubusercontent.com/uwsaml/tvm-distro/master/tophub/%s" download("https://raw.githubusercontent.com/uwsampl/tvm-distro/master/tophub/%s"
% package_name, os.path.join(rootpath, package_name), True, verbose=0) % package_name, os.path.join(rootpath, package_name), True, verbose=0)
......
...@@ -38,7 +38,6 @@ TVM_REGISTER_GLOBAL("tvm.rpc.server.download") ...@@ -38,7 +38,6 @@ TVM_REGISTER_GLOBAL("tvm.rpc.server.download")
TVM_REGISTER_GLOBAL("tvm.rpc.server.remove") TVM_REGISTER_GLOBAL("tvm.rpc.server.remove")
.set_body([](TVMArgs args, TVMRetValue *rv) { .set_body([](TVMArgs args, TVMRetValue *rv) {
std::string file_name = RPCGetPath(args[0]); std::string file_name = RPCGetPath(args[0]);
LOG(INFO) << "Remove " << file_name;
RemoveFile(file_name); RemoveFile(file_name);
}); });
......
# pylint: disable=invalid-name,too-many-locals # pylint: disable=invalid-name,too-many-locals,unused-variable
"""x86 nn operators""" """x86 nn operators"""
from __future__ import absolute_import as _abs from __future__ import absolute_import as _abs
import tvm import tvm
from tvm import autotvm
from tvm.autotvm.task.space import SplitEntity
from .. import generic from .util import get_fp32_len
from ..util import traverse_inline from .. import generic, tag, nn
from ..util import traverse_inline, get_const_tuple
@generic.schedule_softmax.register(["cpu"]) @generic.schedule_softmax.register(["cpu"])
def schedule_softmax(outs): def schedule_softmax(outs):
...@@ -36,56 +39,203 @@ def schedule_softmax(outs): ...@@ -36,56 +39,203 @@ def schedule_softmax(outs):
return s return s
@generic.schedule_dense.register(["cpu"]) @autotvm.register_topi_compute(nn.dense, "cpu", "direct")
def schedule_dense(outs): def _declaration_dense(cfg, data, weight, bias=None):
"""Schedule for dense batch, _ = get_const_tuple(data.shape)
# For small batch sizes, don't pack weight into cache-friendly layout
# because of overhead in packing and limited reuse from batch dimension
# TODO(icemelon9): use a more systematic way to determine which schedule to use
if batch <= 16:
return _declaration_dense_nopack(cfg, data, weight, bias)
return _declaration_dense_pack(cfg, data, weight, bias)
# Declare dense compute with packing weight into cache-friendly layout
@autotvm.register_topi_compute(nn.dense, "cpu", "direct_pack")
def _declaration_dense_pack(cfg, data, weight, bias=None):
batch, in_dim = get_const_tuple(data.shape)
out_dim, _ = get_const_tuple(weight.shape)
# create tuning space
cfg.define_split("tile_y", batch, num_outputs=3)
cfg.define_split("tile_x", out_dim, num_outputs=3)
cfg.define_split("tile_k", in_dim, num_outputs=2)
if cfg.is_fallback:
_default_dense_pack_config(cfg, batch, out_dim, in_dim)
packw_bn = cfg["tile_x"].size[-1]
packw_shape = (out_dim // packw_bn, in_dim, packw_bn)
packw = tvm.compute(packw_shape,
lambda z, y, x: weight[z * packw_bn + x, y], name="packed_weight")
k = tvm.reduce_axis((0, in_dim), name="k")
C = tvm.compute((batch, out_dim),
lambda y, x: tvm.sum(
data[y, k] * packw[x // packw_bn, k, x % packw_bn],
axis=k),
tag="dense_pack")
if bias is not None:
C = tvm.compute((batch, out_dim), lambda i, j: C[i, j] + bias[j],
tag=tag.BROADCAST)
return C
# Declare dense compute without packing weight
@autotvm.register_topi_compute(nn.dense, "cpu", "direct_nopack")
def _declaration_dense_nopack(cfg, data, weight, bias=None):
batch, in_dim = get_const_tuple(data.shape)
out_dim, _ = get_const_tuple(weight.shape)
# create tuning space
cfg.define_split("tile_x", out_dim, num_outputs=2)
cfg.define_split("tile_y", batch, num_outputs=2)
cfg.define_split("tile_k", in_dim, num_outputs=2)
if cfg.is_fallback:
_default_dense_nopack_config(cfg, batch, out_dim, in_dim)
vec = cfg["tile_k"].size[-1]
k = tvm.reduce_axis((0, in_dim // vec), "k")
CC = tvm.compute((batch, out_dim, vec),
lambda z, y, x: tvm.sum(
data[z, k * vec + x] * weight[y, k * vec + x], axis=k))
kk = tvm.reduce_axis((0, vec), "kk")
C = tvm.compute((batch, out_dim),
lambda y, x: tvm.sum(CC[y, x, kk], axis=kk),
tag="dense_nopack")
if bias is not None:
C = tvm.compute((batch, out_dim), lambda i, j: C[i, j] + bias[j],
tag=tag.BROADCAST)
return C
@autotvm.register_topi_schedule(generic.schedule_dense, "cpu", "direct")
def _schedule_dense(cfg, outs):
s = tvm.create_schedule([x.op for x in outs])
scheduled_ops = []
Parameters def _callback(op):
---------- if "dense_pack" in op.tag:
outs: Array of Tensor _schedule_dense_pack_template(cfg, s, op.output(0))
The computation graph description of pool elif 'dense_nopack' in op.tag:
in the format of an array of tensors. _schedule_dense_nopack_template(cfg, s, op.output(0))
traverse_inline(s, outs[0].op, _callback)
return s
Returns
-------
sch: Schedule
The computation schedule for the op.
"""
outs = [outs] if isinstance(outs, tvm.tensor.Tensor) else outs @autotvm.register_topi_schedule(generic.schedule_dense, "cpu", "direct_pack")
def _schedule_dense_pack(cfg, outs):
s = tvm.create_schedule([x.op for x in outs])
scheduled_ops = []
def _callback(op):
if "dense_pack" in op.tag:
_schedule_dense_pack_template(cfg, s, op.output(0))
traverse_inline(s, outs[0].op, _callback)
return s
@autotvm.register_topi_schedule(generic.schedule_dense, "cpu", "direct_nopack")
def _schedule_dense_nopack(cfg, outs):
s = tvm.create_schedule([x.op for x in outs]) s = tvm.create_schedule([x.op for x in outs])
scheduled_ops = []
def _callback(op): def _callback(op):
if 'dense' in op.tag: if 'dense_nopack' in op.tag:
output = outs[0] _schedule_dense_nopack_template(cfg, s, op.output(0))
dense = op.output(0) traverse_inline(s, outs[0].op, _callback)
return s
# Write cache for blocks
if dense.op in s.outputs:
CC = s.cache_write(dense, 'local')
else:
CC = dense
# Tile def _schedule_dense_pack_template(cfg, s, C):
bnx = 1 A, packedB = s[C].op.input_tensors
bny = 4
x, y = output.op.axis
xo, yo, xi, yi = s[output].tile(x, y, bnx, bny)
xc, yc = s[CC].op.axis CC = s.cache_write(C, "global")
y, x = s[C].op.axis
k, = s[CC].op.reduce_axis k, = s[CC].op.reduce_axis
ko, ki = s[CC].split(k, factor=4)
s[CC].reorder(ko, xc, ki, yc)
yt, yo, yi = cfg["tile_y"].apply(s, C, y)
xt, xo, xi = cfg["tile_x"].apply(s, C, x)
s[C].reorder(yt, xt, yo, xo, yi, xi)
xyt = s[C].fuse(yt, xt)
s[C].parallel(xyt)
xyo = s[C].fuse(yo, xo)
s[C].unroll(yi)
s[C].vectorize(xi)
s[CC].compute_at(s[C], xyo)
y, x = s[CC].op.axis
ko, ki = cfg["tile_k"].apply(s, CC, k)
s[CC].reorder(ko, ki, y, x)
s[CC].vectorize(x)
s[CC].unroll(y)
s[CC].unroll(ki) s[CC].unroll(ki)
s[CC].vectorize(yc)
s[output].unroll(xi) z, y, x = s[packedB].op.axis
s[output].vectorize(yi) s[packedB].reorder(z, x, y)
s[packedB].parallel(z)
s[packedB].vectorize(y)
return s
fused = s[output].fuse(xo, yo) def _schedule_dense_nopack_template(cfg, s, C):
s[output].parallel(fused) y, x = s[C].op.axis
s[CC].compute_at(s[output], fused) kk, = s[C].op.reduce_axis
yo, yi = cfg["tile_y"].apply(s, C, y)
xo, xi = cfg["tile_x"].apply(s, C, x)
s[C].reorder(yo, xo, yi, xi)
xyo = s[C].fuse(yo, xo)
s[C].parallel(xyo)
s[C].unroll(kk)
traverse_inline(s, outs[0].op, _callback) CC, = s[C].op.input_tensors
s[CC].compute_at(s[C], xyo)
z, y, x = s[CC].op.axis
k, = s[CC].op.reduce_axis
yz = s[CC].fuse(z, y)
s[CC].reorder(k, yz, x)
s[CC].unroll(yz)
s[CC].vectorize(x)
return s return s
def _default_dense_pack_config(cfg, M, N, K):
vec_width = get_fp32_len()
tilex_ii = 1
for bn in range(vec_width*2, 0, -1):
if N % bn == 0:
tilex_ii = bn
break
NN = N // tilex_ii
tilex_oi = 1
while NN // tilex_oi > 4:
if (NN // tilex_oi) % 2 == 1:
break
tilex_oi *= 2
tiley_ii = 8
while M % tiley_ii != 0:
tiley_ii //= 2
MM = M // tiley_ii
tiley_oi = 1
while MM // tiley_oi > 4:
if (MM // tiley_oi) % 2 == 1:
break
tiley_oi *= 2
cfg["tile_y"] = SplitEntity([MM // tiley_oi, tiley_oi, tiley_ii])
cfg["tile_x"] = SplitEntity([NN // tilex_oi, tilex_oi, tilex_ii])
cfg["tile_k"] = SplitEntity([K, 1])
def _default_dense_nopack_config(cfg, M, N, K):
vec_width = get_fp32_len()
tilek_bn = 1
for bn in range(vec_width*2, 0, -1):
if K % bn == 0:
tilek_bn = bn
break
cfg["tile_k"] = SplitEntity([K // tilek_bn, tilek_bn])
cfg["tile_x"] = SplitEntity([N, 1])
cfg["tile_y"] = SplitEntity([1, M])
...@@ -37,7 +37,7 @@ def verify_dense(batch, in_dim, out_dim, use_bias=True): ...@@ -37,7 +37,7 @@ def verify_dense(batch, in_dim, out_dim, use_bias=True):
with tvm.target.create(device): with tvm.target.create(device):
D = topi.nn.dense(A, B, C if use_bias else None) D = topi.nn.dense(A, B, C if use_bias else None)
D = topi.nn.relu(D) D = topi.nn.relu(D)
s = topi.generic.schedule_dense(D) s = topi.generic.schedule_dense([D])
a = tvm.nd.array(a_np, ctx) a = tvm.nd.array(a_np, ctx)
b = tvm.nd.array(b_np, ctx) b = tvm.nd.array(b_np, ctx)
c = tvm.nd.array(c_np, ctx) c = tvm.nd.array(c_np, ctx)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment