Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
a808a987
Commit
a808a987
authored
Jul 25, 2018
by
Albin Joy
Committed by
Tianqi Chen
Jul 25, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[NNVM][TENSORFLOW] LSTM operator and PTB word prediction frontend (#1389)
parent
f7d05b7c
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
854 additions
and
9 deletions
+854
-9
nnvm/python/nnvm/frontend/tensorflow.py
+435
-7
nnvm/python/nnvm/testing/tf.py
+142
-0
nnvm/tests/python/frontend/tensorflow/test_forward.py
+277
-2
No files found.
nnvm/python/nnvm/frontend/tensorflow.py
View file @
a808a987
# pylint: disable=import-self, invalid-name, unused-argument
# pylint: disable=import-self, invalid-name, unused-argument
, too-many-lines
"""TF: Tensorflow frontend."""
from
__future__
import
absolute_import
as
_abs
from
__future__
import
print_function
...
...
@@ -457,6 +457,190 @@ def _shape():
return
inputs
[
0
]
return
_impl
def
_fill
():
def
_impl
(
inputs
,
attr
,
params
):
fill_arg
=
params
.
pop
(
inputs
.
pop
(
1
)
.
list_output_names
()[
0
])
new_inputs
=
[]
return
AttrCvt
(
op_name
=
'full'
,
extras
=
{
'shape'
:
inputs
[
0
],
'fill_value'
:
fill_arg
.
asnumpy
()[
0
],
'dtype'
:
attr
[
'T'
]
.
name
},
ignores
=
[
'index_type'
,
'T'
])(
new_inputs
,
attr
)
return
_impl
def
_gather_v2
():
"Tensorflow now support only gatherv2"
def
_impl
(
inputs
,
attr
,
params
):
axis
=
params
[
inputs
.
pop
(
2
)
.
list_output_names
()[
0
]]
.
asnumpy
()[
0
]
new_input
=
[]
new_input
.
append
(
inputs
.
pop
(
0
))
new_input
.
append
(
inputs
.
pop
(
0
))
return
AttrCvt
(
op_name
=
"take"
,
extras
=
{
'axis'
:
axis
},
ignores
=
[
'Tindices'
,
'Tparams'
,
'validate_indices'
,
\
'Taxis'
,
'_class'
])(
new_input
,
attr
)
return
_impl
def
_infer_out_shapes
(
inputs
,
params
):
"""A method to get the output shape of an intermediate node in the NNVM graph."""
g
=
_graph
.
create
(
inputs
)
shape_dict
=
{
k
:
v
.
shape
for
k
,
v
in
params
.
items
()}
_
,
out_shapes
=
graph_util
.
infer_shape
(
g
,
**
shape_dict
)
return
out_shapes
def
_stridedSlice
():
def
_impl
(
inputs
,
attr
,
params
):
"""Strided Slice.
Operator description: https://www.tensorflow.org/api_docs/python/tf/strided_slice
Tensorflow mask validation: https://github.com/tensorflow/tensorflow/blob/master/
tensorflow/core/util/strided_slice_op.cc#L147-L368
"""
begin
=
params
.
pop
(
inputs
[
1
]
.
list_output_names
()[
0
])
.
asnumpy
()
.
tolist
()
end
=
params
.
pop
(
inputs
[
2
]
.
list_output_names
()[
0
])
.
asnumpy
()
.
tolist
()
stride
=
params
.
pop
(
inputs
[
3
]
.
list_output_names
()[
0
])
.
asnumpy
()
.
tolist
()
begin_mask
=
int
(
attr
.
get
(
'begin_mask'
,
0
))
end_mask
=
int
(
attr
.
get
(
'end_mask'
,
0
))
ellipsis_mask
=
int
(
attr
.
get
(
'ellipsis_mask'
,
0
))
new_axis_mask
=
int
(
attr
.
get
(
'new_axis_mask'
,
0
))
shrink_axis_mask
=
int
(
attr
.
get
(
'shrink_axis_mask'
,
0
))
data_shape
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
data_dim
=
len
(
data_shape
[
0
])
stride_dim
=
len
(
stride
)
def
_transform_mask
(
stride_dim
,
ellipsis_mask
):
"""Handle mask inputs to create new begin, end, stride and output shape"""
m_begin
=
[
0
]
*
data_dim
m_end
=
[
0
]
*
data_dim
m_stride
=
[
0
]
*
data_dim
#Count new axis after ellipsis_mask, consider while applying ellipsis_mask.
ellipsis_seen
=
False
new_axes_after_ellipsis
=
0
for
i
in
range
(
stride_dim
):
mask
=
1
<<
i
if
ellipsis_seen
and
(
mask
&
new_axis_mask
)
!=
0
:
new_axes_after_ellipsis
+=
1
if
(
mask
&
ellipsis_mask
)
!=
0
:
ellipsis_seen
=
True
if
not
ellipsis_seen
:
#Used later for extending the stride attributes in the below loop.
ellipsis_mask
|=
(
1
<<
stride_dim
)
stride_dim
+=
1
final_index
=
0
for
index
in
range
(
stride_dim
):
mask
=
1
<<
index
if
mask
&
ellipsis_mask
:
#Identify the end index for applying ellipsis_mask
to_index
=
min
(((
data_dim
-
(
stride_dim
-
index
))
+
1
\
+
new_axes_after_ellipsis
),
data_dim
)
for
i
in
range
(
final_index
,
to_index
):
m_begin
[
final_index
]
=
0
m_end
[
final_index
]
=
data_shape
[
0
][
final_index
]
m_stride
[
final_index
]
=
1
final_index
+=
1
elif
not
mask
&
new_axis_mask
:
if
final_index
==
len
(
m_begin
):
break
if
mask
&
begin_mask
:
m_begin
[
final_index
]
=
data_shape
[
0
][
final_index
]
\
if
stride
[
index
]
<
0
else
0
elif
begin
[
index
]:
m_begin
[
final_index
]
=
begin
[
index
]
if
mask
&
end_mask
:
m_end
[
final_index
]
=
0
if
stride
[
index
]
<
0
\
else
data_shape
[
0
][
final_index
]
elif
end
[
index
]:
m_end
[
final_index
]
=
end
[
index
]
m_stride
[
final_index
]
=
stride
[
index
]
if
mask
&
shrink_axis_mask
:
#Tensorflow make axis with shrink_axis_mask as dimension 1
m_begin
[
final_index
]
=
data_shape
[
0
][
final_index
]
+
begin
[
index
]
\
if
begin
[
index
]
<
0
else
begin
[
index
]
m_end
[
final_index
]
=
begin
[
index
]
+
1
m_stride
[
final_index
]
=
1
final_index
+=
1
return
m_begin
,
m_end
,
m_stride
if
begin_mask
or
end_mask
or
ellipsis_mask
or
new_axis_mask
or
shrink_axis_mask
:
begin
,
end
,
stride
=
_transform_mask
(
stride_dim
,
ellipsis_mask
)
out
=
_sym
.
strided_slice
(
inputs
[
0
],
begin
=
begin
,
end
=
end
,
stride
=
stride
)
out_shape
=
_infer_out_shapes
(
out
,
params
)[
0
]
#Create final output shape.
final_output
=
[]
out_index
=
0
index
=
0
while
out_index
!=
len
(
out_shape
):
#axis with shrink_axis_mask dimension=1 and it is ignored.
mask
=
1
<<
index
if
(
new_axis_mask
&
mask
)
and
not
ellipsis_mask
&
mask
:
final_output
.
append
(
1
)
elif
(
not
mask
&
shrink_axis_mask
)
or
index
>=
stride_dim
:
#Shrink is considered till stride_dim
final_output
.
append
(
out_shape
[
out_index
])
out_index
+=
1
index
+=
1
return
_sym
.
reshape
(
out
,
shape
=
tuple
(
final_output
))
return
_impl
def
_LSTMBlockCell
():
def
_impl
(
inputs
,
in_state_c
,
in_state_h
,
attr
,
params
):
"""LSTM Block cell.
Calculations are described in: https://github.com/tensorflow/tensorflow/blob/
r1.8/tensorflow/contrib/rnn/python/ops/lstm_ops.py#L41-L114
Parameters
----------
inputs : nnvm.Symbol
Input data
in_state_c: list of nnvm.Symbol
Cell state input values for all the layers
in_state_h: list of nnvm.Symbol
Hidden state input values for all the layers
attrs : dict
Dict of operator attributes
params : dict
List of pretrained weights and bias
Returns
-------
sym : nnvm.Symbol
Converted nnvm Symbol
output: nnvm.Symbol
Output state value.
"""
in_data
=
inputs
[
0
]
in_weight
=
inputs
[
3
]
in_bias
=
inputs
[
7
]
forget_bias
=
attr
.
pop
(
'forget_bias'
)
input_shape
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
weight_shape
=
attr
[
'_input_shapes'
][
inputs
[
3
]]
batch_size
,
input_size
=
input_shape
[
0
][
0
],
input_shape
[
0
][
1
]
num_hidden_layers
=
weight_shape
[
0
][
1
]
num_hidden
=
num_hidden_layers
//
4
in_data
=
_sym
.
reshape
(
in_data
,
shape
=
(
batch_size
,
input_size
))
ixh
=
_sym
.
concatenate
(
*
[
in_data
,
in_state_h
],
axis
=
1
)
in_weight
=
_sym
.
transpose
(
in_weight
)
gates
=
_sym
.
dense
(
ixh
,
in_weight
,
in_bias
,
use_bias
=
True
,
units
=
num_hidden_layers
,
name
=
"dense"
)
gate_list
=
_sym
.
split
(
gates
,
indices_or_sections
=
4
,
axis
=
1
)
in_gate
=
_sym
.
sigmoid
(
gate_list
[
0
])
in_transform
=
_sym
.
tanh
(
gate_list
[
1
])
forget_gate
=
_sym
.
sigmoid
(
gate_list
[
2
])
forget_gate
=
forget_gate
+
forget_bias
out_gate
=
_sym
.
sigmoid
(
gate_list
[
3
])
next_c
=
_sym
.
broadcast_add
(
_sym
.
broadcast_mul
(
forget_gate
,
in_state_c
),
_sym
.
broadcast_mul
(
in_gate
,
in_transform
))
next_h
=
out_gate
*
_sym
.
tanh
(
next_c
)
out_state
=
_sym
.
concatenate
(
*
[
next_c
,
next_h
])
out_state
=
_sym
.
reshape
(
out_state
,
shape
=
(
2
,
batch_size
,
num_hidden
))
return
next_h
,
out_state
return
_impl
# compatible operators that do NOT require any conversion.
_identity_list
=
[]
...
...
@@ -493,8 +677,192 @@ _convert_map = {
'DepthwiseConv2dNative'
:
_depthwise_conv
(),
'Shape'
:
_shape
(),
'Sigmoid'
:
AttrCvt
(
'sigmoid'
),
'Fill'
:
_fill
(),
'GatherV2'
:
_gather_v2
(),
'StridedSlice'
:
_stridedSlice
(),
}
# _convert_map_rnn defines maps of rnn operator name to
# converter functor(callable) for 1 to 1 mapping.
_convert_map_rnn
=
{
'LSTMBlockCell'
:
_LSTMBlockCell
(),
}
class
RecurrentNetworks
(
object
):
"""Recurrent network layer handlers.
Handle Layer operations.
ToDo: Operators like RNN/GRU layer concepts also can be handled here
Parameters
----------
nodes : list
list of graph nodes used for tensorflow parsing.
out_rnn : list
List of RecurrentNetwork outputs. This output will be appended to the
'head' nodes of the graph.
graph : tensorflow graph definition object
The loaded tensorflow GraphDef
convert_map : dict
Dict of name : callable, where name is the op's name that
require conversion to nnvm, callable are functions which
take attrs and return (new_op_name, new_attrs)
"""
def
__init__
(
self
,
nodes
,
out_rnn
,
graph
,
convert_map
):
self
.
_graph
=
graph
self
.
_convert_map
=
convert_map
self
.
_nodes
=
nodes
self
.
_out_rnn
=
out_rnn
self
.
_cur_lstm_layer
=
0
self
.
_layer_name_list
=
[]
self
.
_recurrent_ops_layer_map
=
{
'LSTMBlockCell'
:
self
.
_LSTMBlockCellLayer
(),
}
def
_LSTMBlockCellLayer
(
self
):
"""LSTMBlockCell layer handler.
Parameters
----------
op_name : str
Operator name, eg:LSTMBlockCell
layer_name : str list
Layer name is used for creating the state input placeholder.
inputs : nnvm.Symbol
Input data
attrs : dict
Dict of operator attributes
params : dict
List of pretrained weights and bias
num_layers : int
Total number of LSTM layer presented in the graph
Returns
-------
sym : nnvm.sym.Symbol
The returned nnvm symbol
"""
def
_impl
(
op_name
,
layer_name
,
inputs
,
attrs
,
params
,
num_layers
):
in_state_c_name
=
layer_name
+
'_c'
in_state_h_name
=
layer_name
+
'_h'
def
_init_state
(
num_layers
,
batch_size
,
num_hidden
):
"""Create the initial states for the first layer in the graph."""
in_state_c
=
_sym
.
Variable
(
in_state_c_name
,
shape
=
(
num_layers
,
batch_size
,
num_hidden
))
in_state_h
=
_sym
.
Variable
(
in_state_h_name
,
shape
=
(
num_layers
,
batch_size
,
num_hidden
))
return
in_state_c
,
in_state_h
def
_get_cur_input_state
(
in_state_c
,
in_state_h
,
num_layers
,
layer
,
batch_size
,
num_hidden
):
"""Select the appropriate states for the current layer"""
in_state_c_tup
=
_sym
.
split
(
in_state_c
,
indices_or_sections
=
num_layers
,
axis
=
0
)
in_state_h_tup
=
_sym
.
split
(
in_state_h
,
indices_or_sections
=
num_layers
,
axis
=
0
)
cur_in_state_c
=
_sym
.
reshape
(
in_state_c_tup
[
layer
],
shape
=
(
batch_size
,
num_hidden
))
cur_in_state_h
=
_sym
.
reshape
(
in_state_h_tup
[
layer
],
shape
=
(
batch_size
,
num_hidden
))
return
cur_in_state_c
,
cur_in_state_h
def
_LSTMBlockCellWrapper
(
inputs
,
attr
,
params
,
num_layers
,
layer
):
"""LSTM cell warapper to prepare the inputs"""
input_shape
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
weight_shape
=
attr
[
'_input_shapes'
][
inputs
[
3
]]
batch_size
=
input_shape
[
0
][
0
]
num_hidden
=
weight_shape
[
0
][
1
]
//
4
if
layer
==
0
:
#Create initial states placeholder in case of first layer
in_state_c
,
in_state_h
=
_init_state
(
num_layers
,
batch_size
,
num_hidden
)
else
:
in_state_c
=
self
.
_nodes
[
in_state_c_name
]
in_state_h
=
self
.
_nodes
[
in_state_h_name
]
cur_in_state_c
,
cur_in_state_h
=
_get_cur_input_state
(
\
in_state_c
,
in_state_h
,
num_layers
,
layer
,
batch_size
,
num_hidden
)
output
,
out_state
=
self
.
_convert_map
[
op_name
](
inputs
,
cur_in_state_c
,
cur_in_state_h
,
attr
,
params
)
return
output
,
out_state
,
in_state_c
,
in_state_h
sym
,
cur_out_state
,
in_state_c
,
in_state_h
=
\
_LSTMBlockCellWrapper
(
inputs
,
attrs
,
params
,
num_layers
,
self
.
_cur_lstm_layer
)
self
.
_nodes
[
in_state_c_name
]
=
in_state_c
self
.
_nodes
[
in_state_h_name
]
=
in_state_h
cur_out_state
=
_sym
.
expand_dims
(
cur_out_state
,
axis
=
0
,
num_newaxis
=
1
)
self
.
_out_rnn
.
append
(
cur_out_state
)
self
.
_cur_lstm_layer
+=
1
return
sym
return
_impl
def
process_op
(
self
,
op_name
,
inputs
,
attrs
,
params
):
"""Process recurrent layer operators.
List '_recurrent_ops_layer_map' map each Layer based operators with its
layer handlers. Total number of layers are calculated to form the input
data shapes.
Parameters
----------
op_name : str
Operator name, such as LSTMBlockCell
inputs : nnvm.Symbol
Input data
attrs : dict
Dict of operator attributes
params : dict
List of pretrained weights and bias
Returns
-------
sym : nnvm.sym.Symbol
The returned nnvm symbol
"""
def
_get_abs_layer_name
(
node
):
"""Identify the layer name is already handled. Return the absolute name
"""
if
not
self
.
_layer_name_list
:
self
.
_layer_name_list
.
append
(
node
.
name
)
return
node
.
name
for
_name
in
self
.
_layer_name_list
:
if
_name
in
node
.
name
:
abs_name
=
_name
else
:
self
.
_layer_name_list
.
append
(
node
.
name
)
abs_name
=
node
.
name
return
abs_name
#Find number of layers of this same operator node in the graph
#and also read the inputs name for the current op.
num_layers
=
0
for
_
,
node
in
enumerate
(
self
.
_graph
.
node
):
if
node
.
op
==
op_name
:
layer_name
=
_get_abs_layer_name
(
node
)
num_layers
+=
1
sym
=
self
.
_recurrent_ops_layer_map
[
op_name
](
op_name
,
layer_name
,
inputs
,
attrs
,
params
,
num_layers
)
return
sym
class
GraphProto
(
object
):
""" A helper class for handling nnvm graph copying from Tensorflow GraphDef.
...
...
@@ -510,6 +878,7 @@ class GraphProto(object):
self
.
_num_input
=
0
self
.
_num_param
=
0
self
.
_input_node
=
''
self
.
_num_rnn_layer
=
False
def
from_tensorflow
(
self
,
graph
):
"""Construct nnvm nodes from tensorflow graph definition - GraphDef.
...
...
@@ -553,16 +922,19 @@ class GraphProto(object):
for
node
in
graph
.
node
:
# Tensorflow doesn't have seperate list for params extraction.
# Operator name 'Const' is treated as a parameter to build NNVM params dict.
input_shapes
=
{}
if
node
.
op
==
"Placeholder"
:
# Assuming only one input graph with type 'Placeholder'
self
.
_input_node
=
node
.
name
self
.
_num_input
+=
1
self
.
_nodes
[
node
.
name
]
=
_sym
.
Variable
(
name
=
node
.
name
)
try
:
self
.
_output_shapes
[
node
.
name
]
=
\
[
tensor_util
.
TensorShapeProtoToList
(
shape
)
\
for
shape
in
self
.
_parse_attr
(
node
.
attr
)[
'_output_shapes'
]]
self
.
_nodes
[
node
.
name
]
=
_sym
.
Variable
(
name
=
node
.
name
,
shape
=
self
.
_output_shapes
[
node
.
name
][
0
])
input_shapes
[
self
.
_nodes
[
node
.
name
]]
=
self
.
_output_shapes
[
node
.
name
]
except
KeyError
:
raise
NotImplementedError
(
\
"Please freeze the graph with add_shapes=True"
)
...
...
@@ -580,7 +952,6 @@ class GraphProto(object):
if
node
.
name
not
in
self
.
_nodes
:
raise
NotImplementedError
(
\
"Const {} couldn't be converted to Param."
.
format
(
node
.
name
))
attr
=
self
.
_parse_attr
(
node
.
attr
)
#Variable converted to Const will not have only value attr
if
'value'
in
attr
:
...
...
@@ -611,9 +982,16 @@ class GraphProto(object):
# Pass the node name too in attr
attr
[
"_node_name"
]
=
node
.
name
#ToDo: Some of the tensorflow operators maintain internaly maintain
#execution layers and its output name will the layer number along with
#graph node name.eg: Node name:- 'Model/RNN/cell_0/RnnCell', but the
#output name will be 'Model/RNN/cell_0/RnnCell:0'. In this case,
#the digit has to be ignored.
if
":"
in
node
.
input
[
0
]:
in_name
,
_
=
node
.
input
[
0
]
.
split
(
':'
)
node
.
input
[
0
]
=
in_name
try
:
inputs
=
[
self
.
_nodes
[
i
]
for
i
in
node
.
input
]
input_shapes
=
{}
for
i
in
node
.
input
:
if
i
not
in
self
.
_params
:
input_shapes
[
self
.
_nodes
[
i
]]
=
self
.
_output_shapes
[
i
]
...
...
@@ -624,12 +1002,20 @@ class GraphProto(object):
inputs
=
self
.
_fix_extranodes
(
node
.
op
,
attr
,
inputs
)
op
=
self
.
_convert_operator
(
node
.
op
,
inputs
,
attr
)
op
=
self
.
_convert_operator
(
node
.
op
,
inputs
,
attr
,
graph
)
# Assuming only one output.
self
.
_nodes
[
node
.
name
]
=
op
node_output
=
op
# Assume the final node is the output node
out
=
node_output
#Add the RNN outputs also with 'head' nodes of the nnvm graph
if
self
.
_num_rnn_layer
:
out_rnn
=
_sym
.
concatenate
(
*
self
.
_out_rnn
,
axis
=
0
)
out
=
[
out
,
out_rnn
]
if
isinstance
(
out
,
list
):
out
=
_sym
.
Group
(
out
)
return
out
,
self
.
_params
def
_parse_param
(
self
,
key
,
value
,
name
):
...
...
@@ -651,7 +1037,7 @@ class GraphProto(object):
self
.
_nodes
[
name
]
=
_sym
.
Variable
(
name
=
name
,
shape
=
self
.
_params
[
name
]
.
shape
)
else
:
if
key
!=
'dtype'
and
key
!=
'_output_shapes'
:
if
key
!=
'dtype'
and
key
!=
'_output_shapes'
and
key
!=
'_class'
:
raise
NotImplementedError
\
(
"Other attributes for a Const(param) Node {} ? ."
.
format
(
key
))
...
...
@@ -706,7 +1092,44 @@ class GraphProto(object):
return
attrs
def
_convert_operator
(
self
,
op_name
,
inputs
,
attrs
,
identity_list
=
None
,
convert_map
=
None
):
def
_convert_rnn_operator
(
self
,
op_name
,
inputs
,
attrs
,
params
,
graph
,
convert_map
):
"""Convert RNN and its variant operators to NNVM operators.
This converter read the input states of each layers and
also maintain the output states of each layer in a list.
Parameters
----------
op_name : str
Operator name, such as LSTMBlockCell
inputs : list of nnvm.Symbol
List of input symbols.
attrs : dict
Dict of operator attributes
params : dict
List of pretrained weights and bias
graph : Tensorflow graph object
Graph is to find the number of upcoming same operator to
calculate the number of layers.
convert_map : dict
Dict of name : callable, where name is the op's name that
require conversion to nnvm, callable are functions which
take attrs and return (new_op_name, new_attrs)
Returns
-------
sym : nnvm.Symbol
Converted nnvm Symbol
"""
if
not
self
.
_num_rnn_layer
:
self
.
_out_rnn
=
[]
self
.
rnn
=
RecurrentNetworks
(
self
.
_nodes
,
self
.
_out_rnn
,
graph
,
convert_map
)
self
.
_num_rnn_layer
=
True
sym
=
self
.
rnn
.
process_op
(
op_name
,
inputs
,
attrs
,
params
)
return
sym
def
_convert_operator
(
self
,
op_name
,
inputs
,
attrs
,
graph
,
identity_list
=
None
,
convert_map
=
None
):
"""Convert from Tensorflow operator to nnvm operator.
The converter must specify conversions explicity for incompatible name, and
apply handlers to operator attributes.
...
...
@@ -733,10 +1156,15 @@ class GraphProto(object):
"""
identity_list
=
identity_list
if
identity_list
else
_identity_list
convert_map
=
convert_map
if
convert_map
else
_convert_map
convert_map_rnn
=
_convert_map_rnn
if
op_name
in
identity_list
:
sym
=
get_nnvm_op
(
op_name
)(
*
inputs
,
**
attrs
)
elif
op_name
in
convert_map
:
sym
=
convert_map
[
op_name
](
inputs
,
attrs
,
self
.
_params
)
elif
op_name
in
convert_map_rnn
:
sym
=
self
.
_convert_rnn_operator
(
op_name
,
inputs
,
attrs
,
self
.
_params
,
graph
,
convert_map_rnn
)
else
:
raise
NotImplementedError
(
"Operator {} not implemented."
.
format
(
op_name
))
return
sym
...
...
nnvm/python/nnvm/testing/tf.py
View file @
a808a987
...
...
@@ -6,6 +6,8 @@ Some helper definitions for tensorflow models.
"""
import
re
import
os.path
import
collections
import
numpy
as
np
# Tensorflow imports
import
tensorflow
as
tf
...
...
@@ -134,3 +136,143 @@ def get_workload(model_path):
graph_def
.
ParseFromString
(
f
.
read
())
graph
=
tf
.
import_graph_def
(
graph_def
,
name
=
''
)
return
graph_def
#######################################################################
# PTB LSTMBlockCell Model
# -----------------------
class
PTBSmallConfig
(
object
):
"""Small config.
This configurations are used when training the model
"""
num_layers
=
2
num_steps
=
1
hidden_size
=
200
batch_size
=
1
vocab_size
=
10000
init_scale
=
0.1
def
get_config
():
"""Configuration used for training the model"""
return
PTBSmallConfig
()
def
pick_from_weight
(
weight
,
pows
=
1.0
):
"""Identify token from Softmax output.
This token will be mapped to word in the vocabulary.
"""
weight
=
weight
**
pows
t
=
np
.
cumsum
(
weight
)
s
=
np
.
sum
(
weight
)
return
int
(
np
.
searchsorted
(
t
,
0.5
*
s
))
def
do_tf_sample
(
session
,
data
,
in_states
,
num_samples
):
"""Sampled from the model"""
samples
=
[]
sample
=
None
#Cell inputs c and h should be passed for each layer explicitly.
state_input_name
=
[
'Model/MultiRNNCellZeroState/LSTMBlockCellZeroState/zeros:0'
,
'Model/MultiRNNCellZeroState/LSTMBlockCellZeroState/zeros_1:0'
,
'Model/MultiRNNCellZeroState/LSTMBlockCellZeroState_1/zeros:0'
,
'Model/MultiRNNCellZeroState/LSTMBlockCellZeroState_1/zeros_1:0'
]
state
=
session
.
run
(
state_input_name
)
#Graph nodes to be fetched as run output. Tensorflow LSTMBlockCell create internal
#nodes for intermediate operations (gates) in the cell during run.
#Cell state (c) is ':1'and cell output (h) is ':6' for each layer.
fetches
=
[[
'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell:1'
,
'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell:6'
,
'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_1:1'
,
'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_1:6'
],
'Model/Softmax:0'
]
def
_get_feed_dict
(
input_name
,
input_data
):
"""Create feed dict"""
feed_dict
=
{}
if
isinstance
(
input_data
,
list
):
for
i
,
e
in
enumerate
(
input_name
):
feed_dict
[
e
]
=
input_data
[
i
]
else
:
feed_dict
[
input_name
]
=
input_data
return
feed_dict
for
x
in
data
:
feed_dict
=
_get_feed_dict
(
state_input_name
,
state
)
feed_dict
[
'Model/Placeholder:0'
]
=
[[
x
]]
state
,
probs
=
session
.
run
(
fetches
,
feed_dict
)
sample
=
pick_from_weight
(
probs
[
0
])
if
sample
is
not
None
:
samples
.
append
(
sample
)
else
:
samples
.
append
(
0
)
k
=
1
while
k
<
num_samples
:
feed_dict
=
_get_feed_dict
(
state_input_name
,
state
)
feed_dict
[
'Model/Placeholder:0'
]
=
[[
samples
[
-
1
]]]
state
,
probs
=
session
.
run
(
fetches
,
feed_dict
)
sample
=
pick_from_weight
(
probs
[
0
])
samples
.
append
(
sample
)
k
+=
1
return
samples
,
state
def
_create_ptb_vocabulary
(
data_dir
):
"""Read the PTB sample data input to create vocabulary"""
data_path
=
data_dir
+
'simple-examples/data/'
file_name
=
'ptb.train.txt'
def
_read_words
(
filename
):
"""Read the data for creating vocabulary"""
with
tf
.
gfile
.
GFile
(
filename
,
"r"
)
as
f
:
return
f
.
read
()
.
encode
(
"utf-8"
)
.
decode
(
"utf-8"
)
.
replace
(
"
\n
"
,
"<eos>"
)
.
split
()
def
_build_vocab
(
filename
):
"""Create vocabulary"""
data
=
_read_words
(
filename
)
counter
=
collections
.
Counter
(
data
)
count_pairs
=
sorted
(
counter
.
items
(),
key
=
lambda
x
:
(
-
x
[
1
],
x
[
0
]))
words
,
_
=
list
(
zip
(
*
count_pairs
))
word_to_id
=
dict
(
zip
(
words
,
range
(
len
(
words
))))
#for python 3.x
id_to_word
=
dict
((
v
,
k
)
for
k
,
v
in
word_to_id
.
items
())
return
word_to_id
,
id_to_word
def
ptb_raw_data
(
data_path
,
file_name
):
"""Read the sample data and create vocabulary"""
train_path
=
os
.
path
.
join
(
data_path
,
file_name
)
word_to_id
,
id_2_word
=
_build_vocab
(
train_path
)
return
word_to_id
,
id_2_word
return
ptb_raw_data
(
data_path
,
file_name
)
def
get_workload_ptb
():
""" Import ptb workload from frozen protobuf
Parameters
----------
Nothing.
Returns
-------
graph_def: graphdef
graph_def is the tensorflow workload for ptb.
word_to_id : dict
English word to integer id mapping
id_to_word : dict
Integer id to English word mapping
"""
sample_repo
=
'http://www.fit.vutbr.cz/~imikolov/rnnlm/'
sample_data_file
=
'simple-examples.tgz'
sample_url
=
sample_repo
+
sample_data_file
ptb_model_file
=
'RNN/ptb/ptb_model_with_lstmblockcell.pb'
import
tarfile
from
tvm.contrib.download
import
download
DATA_DIR
=
'./ptb_data/'
if
not
os
.
path
.
exists
(
DATA_DIR
):
os
.
mkdir
(
DATA_DIR
)
download
(
sample_url
,
DATA_DIR
+
sample_data_file
)
t
=
tarfile
.
open
(
DATA_DIR
+
sample_data_file
,
'r'
)
t
.
extractall
(
DATA_DIR
)
word_to_id
,
id_to_word
=
_create_ptb_vocabulary
(
DATA_DIR
)
return
word_to_id
,
id_to_word
,
get_workload
(
ptb_model_file
)
nnvm/tests/python/frontend/tensorflow/test_forward.py
View file @
a808a987
...
...
@@ -10,12 +10,14 @@ import nnvm.compiler
import
tvm
import
tensorflow
as
tf
from
tensorflow.python.framework
import
constant_op
from
tensorflow.python.framework
import
graph_util
from
tensorflow.python.ops
import
nn_ops
from
tensorflow.python.ops
import
array_ops
from
tensorflow.python.ops
import
gen_array_ops
from
tensorflow.python.ops
import
math_ops
from
tensorflow.python.ops
import
variable_scope
from
tensorflow.python.ops
import
variables
from
tensorflow.python.ops
import
init_ops
from
tensorflow.core.framework
import
graph_pb2
import
nnvm.testing.tf
...
...
@@ -55,8 +57,15 @@ def run_tvm_graph(graph_def, input_data, input_node, output_shape, output_dtype)
# execute
m
.
run
()
# get outputs
tvm_output
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
((
output_shape
),
output_dtype
))
return
tvm_output
.
asnumpy
()
if
isinstance
(
output_shape
,
list
)
and
isinstance
(
output_dtype
,
list
):
tvm_output_list
=
[]
for
i
,
s
in
enumerate
(
output_shape
):
tvm_output
=
m
.
get_output
(
i
,
tvm
.
nd
.
empty
((
s
),
output_dtype
[
i
]))
tvm_output_list
.
append
(
tvm_output
.
asnumpy
())
return
tvm_output_list
else
:
tvm_output
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
((
output_shape
),
output_dtype
))
return
tvm_output
.
asnumpy
()
def
run_tf_graph
(
sess
,
input_data
,
input_node
,
output_node
):
""" Generic function to execute tensorflow """
...
...
@@ -434,6 +443,159 @@ def test_forward_variable():
#######################################################################
# LSTM
# ----
def
_test_lstm_cell
(
batch_size
,
num_hidden
,
num_layers
,
forget_bias
,
dtype
):
tf
.
reset_default_graph
()
input_size
=
num_hidden
input_data
=
np
.
full
((
batch_size
,
input_size
),
1.
,
dtype
=
dtype
)
in_state_c
=
np
.
full
((
num_layers
,
batch_size
,
num_hidden
),
0.1
,
dtype
=
dtype
)
in_state_h
=
np
.
full
((
num_layers
,
batch_size
,
num_hidden
),
0.1
,
dtype
=
dtype
)
def
_get_tensorflow_output
():
with
tf
.
Session
()
as
sess
:
with
variable_scope
.
variable_scope
(
"root"
,
initializer
=
init_ops
.
constant_initializer
(
0.5
)):
m0
=
array_ops
.
zeros
([
batch_size
,
num_hidden
])
m1
=
array_ops
.
zeros
([
batch_size
,
num_hidden
])
x
=
tf
.
placeholder
(
shape
=
(
batch_size
,
input_size
),
dtype
=
dtype
)
g
,
((
out_m0
,
out_m1
))
=
\
tf
.
contrib
.
rnn
.
LSTMBlockCell
(
num_hidden
,
forget_bias
=
forget_bias
)(
x
,
((
m0
,
m1
)))
sess
.
run
([
variables
.
global_variables_initializer
()])
res
=
sess
.
run
([
g
,
out_m0
,
out_m1
],
{
x
.
name
:
np
.
array
([[
1.
,
1.
]]),
m0
.
name
:
0.1
*
np
.
ones
([
batch_size
,
num_hidden
]),
m1
.
name
:
0.1
*
np
.
ones
([
batch_size
,
num_hidden
]),
})
graph_def
=
sess
.
graph
.
as_graph_def
(
add_shapes
=
True
)
final_graph_def
=
graph_util
.
convert_variables_to_constants
(
sess
,
graph_def
,
[
'root/lstm_cell/LSTMBlockCell'
])
return
final_graph_def
,
res
graph_def
,
tf_out
=
_get_tensorflow_output
()
tvm_output
=
run_tvm_graph
(
graph_def
,
[
input_data
,
in_state_c
,
in_state_h
],
[
'root/Placeholder'
,
'root/lstm_cell/LSTMBlockCell_c'
,
'root/lstm_cell/LSTMBlockCell_h'
],
[
tf_out
[
0
]
.
shape
,
(
2
,
batch_size
,
num_hidden
)],
[
tf_out
[
0
]
.
dtype
,
tf_out
[
1
]
.
dtype
])
if
isinstance
(
tvm_output
,
list
):
out
=
tvm_output
[
0
]
out_state
=
tvm_output
[
1
]
out_state_tup
=
np
.
split
(
out_state
,
indices_or_sections
=
2
,
axis
=
0
)
out_state_c
=
np
.
reshape
(
out_state_tup
[
0
],
(
batch_size
,
num_hidden
))
out_state_h
=
np
.
reshape
(
out_state_tup
[
1
],
(
batch_size
,
num_hidden
))
tvm_out
=
[
out
,
out_state_c
,
out_state_h
]
np
.
testing
.
assert_allclose
(
tf_out
,
tvm_out
,
rtol
=
1e-3
,
atol
=
1e-3
)
def
test_forward_lstm
():
'''test LSTM block cell'''
_test_lstm_cell
(
1
,
2
,
1
,
0.0
,
'float32'
)
#######################################################################
# StridedSlice
# ------------
def
_test_stridedslice
(
ip_shape
,
begin
,
end
,
stride
,
dtype
,
begin_mask
=
0
,
end_mask
=
0
,
new_axis_mask
=
0
,
shrink_axis_mask
=
0
,
ellipsis_mask
=
0
):
tf
.
reset_default_graph
()
in_data
=
tf
.
placeholder
(
dtype
,
ip_shape
,
name
=
"in_data"
)
tf
.
strided_slice
(
in_data
,
begin
,
end
,
stride
,
begin_mask
=
begin_mask
,
end_mask
=
end_mask
,
new_axis_mask
=
new_axis_mask
,
shrink_axis_mask
=
shrink_axis_mask
,
ellipsis_mask
=
ellipsis_mask
,
name
=
"strided_slice"
)
np_data
=
np
.
random
.
uniform
(
size
=
ip_shape
)
.
astype
(
dtype
)
with
tf
.
Session
()
as
sess
:
final_graph_def
=
tf
.
graph_util
.
convert_variables_to_constants
(
sess
,
sess
.
graph
.
as_graph_def
(
add_shapes
=
True
),
[
'strided_slice'
])
tf_output
=
run_tf_graph
(
sess
,
np_data
,
'in_data:0'
,
'strided_slice:0'
)
tvm_output
=
run_tvm_graph
(
final_graph_def
,
np_data
,
"in_data"
,
tf_output
.
shape
,
np_data
.
dtype
)
np
.
testing
.
assert_allclose
(
tf_output
,
tvm_output
,
atol
=
1e-5
,
rtol
=
1e-5
)
sess
.
close
()
def
test_forward_stridedslice
():
'''test StridedSlice'''
_test_stridedslice
((
3
,
4
,
3
),
[
1
,
-
1
,
0
],
[
4
,
-
5
,
3
],
[
2
,
-
1
,
1
],
'float32'
)
_test_stridedslice
((
3
,
4
,
3
),
[
1
,
0
],
[
4
,
3
],
[
2
,
1
],
'float32'
,
ellipsis_mask
=
8
)
_test_stridedslice
((
3
,
4
,
3
),
[
1
,
1
,
0
],
[
4
,
4
,
2
],
[
2
,
1
,
1
],
'float32'
,
new_axis_mask
=
5
)
_test_stridedslice
((
3
,
4
,
3
),
[
1
,
1
,
1
],
[
4
,
4
,
1
],
[
2
,
1
,
1
],
'float32'
,
ellipsis_mask
=
2
,
new_axis_mask
=
4
)
_test_stridedslice
((
3
,
4
,
3
),
[
1
,
1
,
2
],
[
4
,
4
,
3
],
[
2
,
1
,
1
],
'float32'
,
ellipsis_mask
=
4
,
new_axis_mask
=
2
)
_test_stridedslice
((
3
,
4
,
3
),
[
1
,
1
,
2
],
[
4
,
4
,
3
],
[
2
,
1
,
1
],
'float32'
,
ellipsis_mask
=
2
,
new_axis_mask
=
3
)
_test_stridedslice
((
3
,
4
,
3
),
[
1
,
1
,
0
],
[
4
,
4
,
1
],
[
2
,
1
,
1
],
'float32'
,
ellipsis_mask
=
2
,
new_axis_mask
=
3
)
_test_stridedslice
((
3
,
4
,
3
),
[
1
,
1
,
2
],
[
4
,
4
,
3
],
[
2
,
1
,
1
],
'float32'
,
ellipsis_mask
=
2
,
new_axis_mask
=
2
)
_test_stridedslice
((
3
,
4
),
[
1
,
0
],
[
4
,
4
],
[
1
,
1
],
'float32'
,
shrink_axis_mask
=
2
)
_test_stridedslice
((
3
,
4
,
3
),
[
1
,
1
,
0
],
[
4
,
4
,
3
],
[
2
,
1
,
1
],
'float32'
,
shrink_axis_mask
=
2
,
new_axis_mask
=
2
)
_test_stridedslice
((
3
,
4
,
3
),
[
1
,
1
,
0
],
[
4
,
4
,
3
],
[
2
,
1
,
1
],
'float32'
,
shrink_axis_mask
=
1
,
new_axis_mask
=
2
)
_test_stridedslice
((
3
,
4
,
3
),
[
1
,
1
,
0
],
[
4
,
4
,
3
],
[
2
,
1
,
1
],
'float32'
,
shrink_axis_mask
=
2
,
new_axis_mask
=
1
)
_test_stridedslice
((
3
,
4
,
5
,
4
,
5
,
6
),
[
0
,
0
],
[
2
,
3
],
[
1
,
1
],
'float32'
,
shrink_axis_mask
=
5
,
new_axis_mask
=
1
)
_test_stridedslice
((
3
,
4
,
5
,
4
,
5
,
6
),
[
0
,
0
,
1
,
2
,
1
],
[
2
,
3
,
4
,
5
,
3
],
[
1
,
1
,
2
,
2
,
1
],
'float32'
,
shrink_axis_mask
=
5
,
new_axis_mask
=
1
,
ellipsis_mask
=
2
,
begin_mask
=
8
,
end_mask
=
8
)
_test_stridedslice
((
3
,
4
,
5
,
4
,
5
,
6
),
[
0
,
0
,
1
,
2
,
1
],
[
2
,
3
,
4
,
5
,
3
],
[
1
,
1
,
2
,
2
,
1
],
'float32'
,
shrink_axis_mask
=
8
,
new_axis_mask
=
1
,
ellipsis_mask
=
2
,
begin_mask
=
5
,
end_mask
=
5
)
_test_stridedslice
((
3
,
4
,
5
,
4
,
5
,
6
),
[
0
,
0
,
1
,
2
,
1
],
[
2
,
3
,
4
,
5
,
3
],
[
1
,
1
,
2
,
2
,
1
],
'float32'
,
shrink_axis_mask
=
16
,
new_axis_mask
=
1
,
ellipsis_mask
=
2
,
begin_mask
=
5
,
end_mask
=
5
)
_test_stridedslice
((
3
,
4
,
5
,
4
,
5
,
6
),
[
1
,
2
,
0
,
-
3
],
[
4
,
5
,
3
,
3
],
[
2
,
2
,
1
,
1
],
'float32'
,
shrink_axis_mask
=
8
,
new_axis_mask
=
1
,
ellipsis_mask
=
2
,
begin_mask
=
5
,
end_mask
=
8
)
#######################################################################
# Gather
# ------
def
_test_gather
(
ip_shape
,
indice_shape
,
indice_value
,
axis
,
dtype
):
tf
.
reset_default_graph
()
in_data
=
tf
.
placeholder
(
dtype
,
ip_shape
,
name
=
"in_data"
)
indices
=
tf
.
placeholder
(
"int32"
,
indice_shape
,
name
=
"indices"
)
tf
.
gather
(
in_data
,
indices
,
axis
=
axis
)
np_data
=
np
.
random
.
uniform
(
size
=
ip_shape
)
.
astype
(
dtype
)
def
_fill_indices
(
indice_value
):
indices
=
np
.
array
(
ip_shape
,
dtype
=
dtype
)
if
isinstance
(
indice_value
,
int
):
indices
=
np
.
array
([
indice_value
],
dtype
=
'int32'
)
else
:
indices
=
np
.
asarray
(
indice_value
,
dtype
=
'int32'
)
return
indices
np_indices
=
_fill_indices
(
indice_value
)
with
tf
.
Session
()
as
sess
:
final_graph_def
=
tf
.
graph_util
.
convert_variables_to_constants
(
sess
,
sess
.
graph
.
as_graph_def
(
add_shapes
=
True
),
[
'GatherV2'
])
tf_output
=
run_tf_graph
(
sess
,
[
np_data
,
np_indices
],
[
'in_data:0'
,
'indices:0'
],
'GatherV2:0'
)
tvm_output
=
run_tvm_graph
(
final_graph_def
,
[
np_data
,
np_indices
],
[
'in_data'
,
'indices'
],
tf_output
.
shape
,
dtype
)
np
.
testing
.
assert_allclose
(
tf_output
,
tvm_output
,
atol
=
1e-5
,
rtol
=
1e-5
)
sess
.
close
()
def
test_forward_gather
():
'''test gather layer'''
_test_gather
((
4
,),
(
1
,),
1
,
0
,
'int32'
)
_test_gather
((
4
,),
(
1
,),
1
,
0
,
'float32'
)
_test_gather
((
1
,
4
),
(
1
,),
[
0
],
0
,
'int32'
)
_test_gather
((
4
,),
(
1
,
2
,
2
),
[[[
1
,
0
],[
0
,
1
]]],
0
,
'float32'
)
_test_gather
((
2
,
2
),
(
1
,
2
,
2
),
[[[
1
,
0
],[
0
,
1
]]],
0
,
'int32'
)
_test_gather
((
2
,
2
),
(
1
,
2
,
2
),
[[[
1
,
0
],[
0
,
1
]]],
1
,
'int32'
)
_test_gather
((
2
,
2
),
(
1
,
2
,
2
),
[[[
1
,
0
],[
0
,
1
]]],
0
,
'float32'
)
_test_gather
((
3
,
3
,
3
),
(
1
,
1
,
2
),
[[[
1
,
0
]]],
0
,
'int32'
)
_test_gather
((
3
,
3
,
3
),
(
1
,
1
,
2
),
[[[
1
,
0
]]],
2
,
'int32'
)
_test_gather
((
4
,
3
,
5
,
6
),
(
1
,
4
),
[[
2
,
1
,
0
,
0
]],
0
,
'float32'
)
#######################################################################
# Multi Input to graph
# --------------------
...
...
@@ -584,6 +746,115 @@ def test_forward_mobilenet():
np
.
testing
.
assert_allclose
(
np
.
squeeze
(
tvm_output
),
np
.
squeeze
(
tf_output
),
rtol
=
1e-5
,
atol
=
1e-5
)
#######################################################################
# PTB
# ---
dir
(
tf
.
contrib
)
def
test_forward_ptb
():
'''test ptb model'''
config
=
nnvm
.
testing
.
tf
.
get_config
()
num_steps
=
config
.
num_steps
num_hidden
=
config
.
hidden_size
num_layers
=
config
.
num_layers
batch_size
=
config
.
batch_size
vocab_size
=
config
.
vocab_size
out_sample_shape
=
(
batch_size
,
vocab_size
)
out_state_shape
=
(
num_layers
,
2
,
batch_size
,
num_hidden
)
#Sample input
inpt
=
"we have no useful information on"
cnt_sample
=
20
def
_pretty_print
(
items
,
is_char_model
,
id2word
):
if
not
is_char_model
:
return
' '
.
join
([
id2word
[
x
]
for
x
in
items
])
else
:
return
''
.
join
([
id2word
[
x
]
for
x
in
items
])
.
replace
(
'_'
,
' '
)
def
_get_tvm_graph_module
(
graph_def
):
sym
,
params
=
nnvm
.
frontend
.
from_tensorflow
(
graph_def
)
#Cell inputs 'c and 'h' consist of all layers values
shape_dict
=
{
'Model/Placeholder'
:
(
batch_size
,
num_steps
),
'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_c'
:(
num_layers
,
batch_size
,
num_hidden
),
'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_h'
:(
num_layers
,
batch_size
,
num_hidden
)}
dtype_dict
=
{
'Model/Placeholder'
:
'int32'
,
'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_c'
:
'float32'
,
'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_h'
:
'float32'
}
target
=
'llvm'
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
sym
,
target
,
shape_dict
,
dtype
=
dtype_dict
,
params
=
params
)
from
tvm.contrib
import
graph_runtime
ctx
=
tvm
.
cpu
(
0
)
return
params
,
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
def
_do_tvm_sample
(
model
,
data
,
in_states
,
params
,
num_samples
):
"""Sampled from the model"""
samples
=
[]
state
=
in_states
sample
=
None
def
_get_sample
(
data
,
state
):
input_data
=
np
.
full
((
batch_size
,
num_steps
),
data
,
dtype
=
"int32"
)
in_state_tup
=
np
.
split
(
state
,
indices_or_sections
=
2
,
axis
=
1
)
in_state_c
=
np
.
reshape
(
in_state_tup
[
0
],
(
num_layers
,
batch_size
,
num_hidden
))
in_state_h
=
np
.
reshape
(
in_state_tup
[
1
],
(
num_layers
,
batch_size
,
num_hidden
))
model
.
set_input
(
'Model/Placeholder'
,
tvm
.
nd
.
array
(
input_data
.
astype
(
"int32"
)))
model
.
set_input
(
'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_c'
,
tvm
.
nd
.
array
(
in_state_c
.
astype
(
"float32"
)))
model
.
set_input
(
'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_h'
,
tvm
.
nd
.
array
(
in_state_h
.
astype
(
"float32"
)))
model
.
set_input
(
**
params
)
model
.
run
()
tvm_output
=
model
.
get_output
(
0
,
tvm
.
nd
.
empty
(
out_sample_shape
,
"float32"
))
.
asnumpy
()
state_output
=
model
.
get_output
(
1
,
tvm
.
nd
.
empty
(
out_state_shape
,
"float32"
))
.
asnumpy
()
sample
=
nnvm
.
testing
.
tf
.
pick_from_weight
(
tvm_output
[
0
])
return
sample
,
state_output
for
x
in
data
:
sample
,
state
=
_get_sample
(
x
,
state
)
if
sample
is
not
None
:
samples
.
append
(
sample
)
else
:
samples
.
append
(
0
)
k
=
1
while
k
<
num_samples
:
sample
,
state
=
_get_sample
(
samples
[
-
1
],
state
)
samples
.
append
(
sample
)
k
+=
1
return
samples
,
state
with
tf
.
Graph
()
.
as_default
():
word_to_id
,
id_to_word
,
graph_def
=
nnvm
.
testing
.
tf
.
get_workload_ptb
()
vocab_size
=
len
(
word_to_id
)
# Call the utility to import the graph definition into default graph.
graph_def
=
nnvm
.
testing
.
tf
.
ProcessGraphDefParam
(
graph_def
)
sess
=
tf
.
Session
()
#TVM graph module creation
params
,
m
=
_get_tvm_graph_module
(
graph_def
)
# Create 10 predicted statments of 20 words
cnt_stm
=
0
while
cnt_stm
<
10
:
cnt_stm
+=
1
in_state
=
np
.
full
((
num_layers
,
2
,
batch_size
,
num_hidden
),
0
,
dtype
=
"float32"
)
seed_for_sample
=
inpt
.
split
()
tvm_samples
,
tvm_state
=
_do_tvm_sample
(
m
,
[
word_to_id
[
word
]
\
for
word
in
seed_for_sample
],
in_state
,
params
,
cnt_sample
)
tvm_sample_str
=
_pretty_print
(
tvm_samples
,
False
,
id_to_word
)
tf_samples
,
tf_state
=
nnvm
.
testing
.
tf
.
do_tf_sample
(
sess
,
[
word_to_id
[
word
]
for
word
in
seed_for_sample
],
in_state
,
cnt_sample
)
tf_sample_str
=
_pretty_print
(
tf_samples
,
False
,
id_to_word
)
inpt
=
tvm_sample_str
np
.
testing
.
assert_allclose
(
tf_samples
,
tvm_samples
,
rtol
=
1e-5
,
atol
=
1e-5
)
assert
(
tvm_sample_str
==
tf_sample_str
)
#######################################################################
# Main
# ----
if
__name__
==
'__main__'
:
...
...
@@ -600,3 +871,7 @@ if __name__ == '__main__':
test_forward_mobilenet
()
test_forward_variable
()
test_forward_resize_bilinear
()
test_forward_lstm
()
test_forward_stridedslice
()
test_forward_gather
()
test_forward_ptb
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment