Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
a80356bb
Commit
a80356bb
authored
Aug 15, 2018
by
Lianmin Zheng
Committed by
Tianqi Chen
Aug 15, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[NNVM] Add symbol for inception v3 (#1604)
parent
7751a6ba
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
442 additions
and
8 deletions
+442
-8
nnvm/python/nnvm/testing/__init__.py
+1
-0
nnvm/python/nnvm/testing/inception_v3.py
+255
-0
nnvm/python/nnvm/testing/squeezenet.py
+1
-1
nnvm/src/compiler/graph_hash.cc
+1
-1
nnvm/tests/python/frontend/mxnet/model_zoo/__init__.py
+5
-4
nnvm/tests/python/frontend/mxnet/model_zoo/inception_v3.py
+170
-0
nnvm/tests/python/frontend/mxnet/test_graph.py
+9
-2
No files found.
nnvm/python/nnvm/testing/__init__.py
View file @
a80356bb
...
...
@@ -8,6 +8,7 @@ from . import mlp
from
.
import
resnet
from
.
import
vgg
from
.
import
squeezenet
from
.
import
inception_v3
from
.
import
dcgan
from
.
import
dqn
from
.
import
yolo2_detection
nnvm/python/nnvm/testing/inception_v3.py
0 → 100644
View file @
a80356bb
"""
Inception V3, suitable for images with around 299 x 299
Reference:
Szegedy, Christian, et al. "Rethinking the Inception Architecture for Computer Vision."
arXiv preprint arXiv:1512.00567 (2015).
Adopted from https://github.com/apache/incubator-mxnet/blob/
master/example/image-classification/symbols/inception-v3.py
"""
# pylint: disable=invalid-name,missing-docstring,unused-argument
from
..
import
symbol
as
sym
from
.utils
import
create_workload
def
Conv
(
data
,
num_filter
,
kernel
=
(
1
,
1
),
stride
=
(
1
,
1
),
pad
=
(
0
,
0
),
name
=
None
,
suffix
=
''
):
conv
=
sym
.
conv2d
(
data
=
data
,
channels
=
num_filter
,
kernel_size
=
kernel
,
strides
=
stride
,
padding
=
pad
,
use_bias
=
False
,
name
=
'
%
s
%
s_conv2d'
%
(
name
,
suffix
))
bn
=
sym
.
batch_norm
(
data
=
conv
,
name
=
'
%
s
%
s_batchnorm'
%
(
name
,
suffix
),
epsilon
=
2e-5
)
act
=
sym
.
relu
(
data
=
bn
,
name
=
'
%
s
%
s_relu'
%
(
name
,
suffix
))
return
act
def
Pooling
(
data
,
kernel
,
stride
,
pad
,
pool_type
,
name
):
if
pool_type
==
'max'
:
return
sym
.
max_pool2d
(
data
=
data
,
pool_size
=
kernel
,
strides
=
stride
,
padding
=
pad
,
name
=
name
)
elif
pool_type
==
'avg'
:
return
sym
.
avg_pool2d
(
data
=
data
,
pool_size
=
kernel
,
strides
=
stride
,
padding
=
pad
,
name
=
name
,
count_include_pad
=
True
)
else
:
raise
ValueError
(
"Invalid pooling type: "
+
pool_type
)
def
Inception7A
(
data
,
num_1x1
,
num_3x3_red
,
num_3x3_1
,
num_3x3_2
,
num_5x5_red
,
num_5x5
,
pool
,
proj
,
name
):
tower_1x1
=
Conv
(
data
,
num_1x1
,
name
=
(
'
%
s_conv'
%
name
))
tower_5x5
=
Conv
(
data
,
num_5x5_red
,
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv'
)
tower_5x5
=
Conv
(
tower_5x5
,
num_5x5
,
kernel
=
(
5
,
5
),
pad
=
(
2
,
2
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv_1'
)
tower_3x3
=
Conv
(
data
,
num_3x3_red
,
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv'
)
tower_3x3
=
Conv
(
tower_3x3
,
num_3x3_1
,
kernel
=
(
3
,
3
),
pad
=
(
1
,
1
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_1'
)
tower_3x3
=
Conv
(
tower_3x3
,
num_3x3_2
,
kernel
=
(
3
,
3
),
pad
=
(
1
,
1
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_2'
)
pooling
=
Pooling
(
data
=
data
,
kernel
=
(
3
,
3
),
stride
=
(
1
,
1
),
pad
=
(
1
,
1
),
pool_type
=
pool
,
name
=
(
'
%
s_pool_
%
s_pool'
%
(
pool
,
name
)))
cproj
=
Conv
(
pooling
,
proj
,
name
=
(
'
%
s_tower_2'
%
name
),
suffix
=
'_conv'
)
concat
=
sym
.
concatenate
(
*
[
tower_1x1
,
tower_5x5
,
tower_3x3
,
cproj
],
name
=
'ch_concat_
%
s_chconcat'
%
name
)
return
concat
# First Downsample
def
Inception7B
(
data
,
num_3x3
,
num_d3x3_red
,
num_d3x3_1
,
num_d3x3_2
,
pool
,
name
):
tower_3x3
=
Conv
(
data
,
num_3x3
,
kernel
=
(
3
,
3
),
pad
=
(
0
,
0
),
stride
=
(
2
,
2
),
name
=
(
'
%
s_conv'
%
name
))
tower_d3x3
=
Conv
(
data
,
num_d3x3_red
,
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv'
)
tower_d3x3
=
Conv
(
tower_d3x3
,
num_d3x3_1
,
kernel
=
(
3
,
3
),
pad
=
(
1
,
1
),
stride
=
(
1
,
1
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv_1'
)
tower_d3x3
=
Conv
(
tower_d3x3
,
num_d3x3_2
,
kernel
=
(
3
,
3
),
pad
=
(
0
,
0
),
stride
=
(
2
,
2
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv_2'
)
pooling
=
Pooling
(
data
=
data
,
kernel
=
(
3
,
3
),
stride
=
(
2
,
2
),
pad
=
(
0
,
0
),
pool_type
=
"max"
,
name
=
(
'max_pool_
%
s_pool'
%
name
))
concat
=
sym
.
concatenate
(
*
[
tower_3x3
,
tower_d3x3
,
pooling
],
name
=
'ch_concat_
%
s_chconcat'
%
name
)
return
concat
def
Inception7C
(
data
,
num_1x1
,
num_d7_red
,
num_d7_1
,
num_d7_2
,
num_q7_red
,
num_q7_1
,
num_q7_2
,
num_q7_3
,
num_q7_4
,
pool
,
proj
,
name
):
tower_1x1
=
Conv
(
data
=
data
,
num_filter
=
num_1x1
,
kernel
=
(
1
,
1
),
name
=
(
'
%
s_conv'
%
name
))
tower_d7
=
Conv
(
data
=
data
,
num_filter
=
num_d7_red
,
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv'
)
tower_d7
=
Conv
(
data
=
tower_d7
,
num_filter
=
num_d7_1
,
kernel
=
(
1
,
7
),
pad
=
(
0
,
3
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv_1'
)
tower_d7
=
Conv
(
data
=
tower_d7
,
num_filter
=
num_d7_2
,
kernel
=
(
7
,
1
),
pad
=
(
3
,
0
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv_2'
)
tower_q7
=
Conv
(
data
=
data
,
num_filter
=
num_q7_red
,
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv'
)
tower_q7
=
Conv
(
data
=
tower_q7
,
num_filter
=
num_q7_1
,
kernel
=
(
7
,
1
),
pad
=
(
3
,
0
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_1'
)
tower_q7
=
Conv
(
data
=
tower_q7
,
num_filter
=
num_q7_2
,
kernel
=
(
1
,
7
),
pad
=
(
0
,
3
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_2'
)
tower_q7
=
Conv
(
data
=
tower_q7
,
num_filter
=
num_q7_3
,
kernel
=
(
7
,
1
),
pad
=
(
3
,
0
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_3'
)
tower_q7
=
Conv
(
data
=
tower_q7
,
num_filter
=
num_q7_4
,
kernel
=
(
1
,
7
),
pad
=
(
0
,
3
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_4'
)
pooling
=
Pooling
(
data
=
data
,
kernel
=
(
3
,
3
),
stride
=
(
1
,
1
),
pad
=
(
1
,
1
),
pool_type
=
pool
,
name
=
(
'
%
s_pool_
%
s_pool'
%
(
pool
,
name
)))
cproj
=
Conv
(
data
=
pooling
,
num_filter
=
proj
,
kernel
=
(
1
,
1
),
name
=
(
'
%
s_tower_2'
%
name
),
suffix
=
'_conv'
)
# concat
concat
=
sym
.
concatenate
(
*
[
tower_1x1
,
tower_d7
,
tower_q7
,
cproj
],
name
=
'ch_concat_
%
s_chconcat'
%
name
)
return
concat
def
Inception7D
(
data
,
num_3x3_red
,
num_3x3
,
num_d7_3x3_red
,
num_d7_1
,
num_d7_2
,
num_d7_3x3
,
pool
,
name
):
tower_3x3
=
Conv
(
data
=
data
,
num_filter
=
num_3x3_red
,
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv'
)
tower_3x3
=
Conv
(
data
=
tower_3x3
,
num_filter
=
num_3x3
,
kernel
=
(
3
,
3
),
pad
=
(
0
,
0
),
stride
=
(
2
,
2
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv_1'
)
tower_d7_3x3
=
Conv
(
data
=
data
,
num_filter
=
num_d7_3x3_red
,
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv'
)
tower_d7_3x3
=
Conv
(
data
=
tower_d7_3x3
,
num_filter
=
num_d7_1
,
kernel
=
(
1
,
7
),
pad
=
(
0
,
3
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_1'
)
tower_d7_3x3
=
Conv
(
data
=
tower_d7_3x3
,
num_filter
=
num_d7_2
,
kernel
=
(
7
,
1
),
pad
=
(
3
,
0
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_2'
)
tower_d7_3x3
=
Conv
(
data
=
tower_d7_3x3
,
num_filter
=
num_d7_3x3
,
kernel
=
(
3
,
3
),
stride
=
(
2
,
2
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_3'
)
pooling
=
Pooling
(
data
=
data
,
kernel
=
(
3
,
3
),
stride
=
(
2
,
2
),
pool_type
=
pool
,
pad
=
(
0
,
0
),
name
=
(
'
%
s_pool_
%
s_pool'
%
(
pool
,
name
)))
# concat
concat
=
sym
.
concatenate
(
*
[
tower_3x3
,
tower_d7_3x3
,
pooling
],
name
=
'ch_concat_
%
s_chconcat'
%
name
)
return
concat
def
Inception7E
(
data
,
num_1x1
,
num_d3_red
,
num_d3_1
,
num_d3_2
,
num_3x3_d3_red
,
num_3x3
,
num_3x3_d3_1
,
num_3x3_d3_2
,
pool
,
proj
,
name
):
tower_1x1
=
Conv
(
data
=
data
,
num_filter
=
num_1x1
,
kernel
=
(
1
,
1
),
name
=
(
'
%
s_conv'
%
name
))
tower_d3
=
Conv
(
data
=
data
,
num_filter
=
num_d3_red
,
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv'
)
tower_d3_a
=
Conv
(
data
=
tower_d3
,
num_filter
=
num_d3_1
,
kernel
=
(
1
,
3
),
pad
=
(
0
,
1
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_mixed_conv'
)
tower_d3_b
=
Conv
(
data
=
tower_d3
,
num_filter
=
num_d3_2
,
kernel
=
(
3
,
1
),
pad
=
(
1
,
0
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_mixed_conv_1'
)
tower_3x3_d3
=
Conv
(
data
=
data
,
num_filter
=
num_3x3_d3_red
,
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv'
)
tower_3x3_d3
=
Conv
(
data
=
tower_3x3_d3
,
num_filter
=
num_3x3
,
kernel
=
(
3
,
3
),
pad
=
(
1
,
1
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_1'
)
tower_3x3_d3_a
=
Conv
(
data
=
tower_3x3_d3
,
num_filter
=
num_3x3_d3_1
,
kernel
=
(
1
,
3
),
pad
=
(
0
,
1
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_mixed_conv'
)
tower_3x3_d3_b
=
Conv
(
data
=
tower_3x3_d3
,
num_filter
=
num_3x3_d3_2
,
kernel
=
(
3
,
1
),
pad
=
(
1
,
0
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_mixed_conv_1'
)
pooling
=
Pooling
(
data
=
data
,
kernel
=
(
3
,
3
),
stride
=
(
1
,
1
),
pad
=
(
1
,
1
),
pool_type
=
pool
,
name
=
(
'
%
s_pool_
%
s_pool'
%
(
pool
,
name
)))
cproj
=
Conv
(
data
=
pooling
,
num_filter
=
proj
,
kernel
=
(
1
,
1
),
name
=
(
'
%
s_tower_2'
%
name
),
suffix
=
'_conv'
)
# concat
concat
=
sym
.
concatenate
(
*
[
tower_1x1
,
tower_d3_a
,
tower_d3_b
,
tower_3x3_d3_a
,
tower_3x3_d3_b
,
cproj
],
name
=
'ch_concat_
%
s_chconcat'
%
name
)
return
concat
def
get_symbol
(
num_classes
=
1000
,
**
kwargs
):
data
=
sym
.
Variable
(
name
=
"data"
)
# stage 1
conv
=
Conv
(
data
,
32
,
kernel
=
(
3
,
3
),
stride
=
(
2
,
2
),
name
=
"conv"
)
conv_1
=
Conv
(
conv
,
32
,
kernel
=
(
3
,
3
),
name
=
"conv_1"
)
conv_2
=
Conv
(
conv_1
,
64
,
kernel
=
(
3
,
3
),
pad
=
(
1
,
1
),
name
=
"conv_2"
)
pool
=
Pooling
(
data
=
conv_2
,
kernel
=
(
3
,
3
),
stride
=
(
2
,
2
),
pool_type
=
"max"
,
pad
=
(
0
,
0
),
name
=
"pool"
)
# stage 2
conv_3
=
Conv
(
pool
,
80
,
kernel
=
(
1
,
1
),
name
=
"conv_3"
)
conv_4
=
Conv
(
conv_3
,
192
,
kernel
=
(
3
,
3
),
name
=
"conv_4"
)
pool1
=
Pooling
(
data
=
conv_4
,
kernel
=
(
3
,
3
),
stride
=
(
2
,
2
),
pool_type
=
"max"
,
pad
=
(
0
,
0
),
name
=
"pool1"
)
# stage 3
in3a
=
Inception7A
(
pool1
,
64
,
64
,
96
,
96
,
48
,
64
,
"avg"
,
32
,
"mixed"
)
in3b
=
Inception7A
(
in3a
,
64
,
64
,
96
,
96
,
48
,
64
,
"avg"
,
64
,
"mixed_1"
)
in3c
=
Inception7A
(
in3b
,
64
,
64
,
96
,
96
,
48
,
64
,
"avg"
,
64
,
"mixed_2"
)
in3d
=
Inception7B
(
in3c
,
384
,
64
,
96
,
96
,
"max"
,
"mixed_3"
)
# stage 4
in4a
=
Inception7C
(
in3d
,
192
,
128
,
128
,
192
,
128
,
128
,
128
,
128
,
192
,
"avg"
,
192
,
"mixed_4"
)
in4b
=
Inception7C
(
in4a
,
192
,
160
,
160
,
192
,
160
,
160
,
160
,
160
,
192
,
"avg"
,
192
,
"mixed_5"
)
in4c
=
Inception7C
(
in4b
,
192
,
160
,
160
,
192
,
160
,
160
,
160
,
160
,
192
,
"avg"
,
192
,
"mixed_6"
)
in4d
=
Inception7C
(
in4c
,
192
,
192
,
192
,
192
,
192
,
192
,
192
,
192
,
192
,
"avg"
,
192
,
"mixed_7"
)
in4e
=
Inception7D
(
in4d
,
192
,
320
,
192
,
192
,
192
,
192
,
"max"
,
"mixed_8"
)
# stage 5
in5a
=
Inception7E
(
in4e
,
320
,
384
,
384
,
384
,
448
,
384
,
384
,
384
,
"avg"
,
192
,
"mixed_9"
)
in5b
=
Inception7E
(
in5a
,
320
,
384
,
384
,
384
,
448
,
384
,
384
,
384
,
"max"
,
192
,
"mixed_10"
)
# pool
pool
=
Pooling
(
data
=
in5b
,
kernel
=
(
8
,
8
),
stride
=
(
1
,
1
),
pool_type
=
"avg"
,
pad
=
(
0
,
0
),
name
=
"global_pool"
)
flatten
=
sym
.
flatten
(
data
=
pool
,
name
=
"flatten"
)
fc1
=
sym
.
dense
(
data
=
flatten
,
units
=
num_classes
,
name
=
'fc1'
)
softmax
=
sym
.
softmax
(
data
=
fc1
,
name
=
'softmax'
)
return
softmax
def
get_workload
(
batch_size
=
1
,
num_classes
=
1000
,
image_shape
=
(
3
,
299
,
299
),
dtype
=
"float32"
,
**
kwargs
):
"""Get benchmark workload for InceptionV3
Parameters
----------
batch_size : int
The batch size used in the model
num_classes : int, optional
Number of classes
image_shape : tuple, optional
The input image shape
dtype : str, optional
The data type
kwargs : dict
Extra arguments
Returns
-------
net : nnvm.Symbol
The computational graph
params : dict of str to NDArray
The parameters.
"""
net
=
get_symbol
(
num_classes
=
num_classes
,
**
kwargs
)
return
create_workload
(
net
,
batch_size
,
image_shape
,
dtype
)
nnvm/python/nnvm/testing/squeezenet.py
View file @
a80356bb
...
...
@@ -98,7 +98,7 @@ def get_symbol(num_classes, version, **kwargs):
def
get_workload
(
batch_size
=
1
,
num_classes
=
1000
,
version
=
'1.0'
,
image_shape
=
(
3
,
224
,
224
),
dtype
=
"float32"
,
**
kwargs
):
"""Get benchmark workload for
resn
et
"""Get benchmark workload for
SqueezeN
et
Parameters
----------
...
...
nnvm/src/compiler/graph_hash.cc
View file @
a80356bb
...
...
@@ -125,7 +125,7 @@ std::string GraphDeepCompare(const Graph& a,
const
IndexedGraph
&
idxb
=
b
.
indexed_graph
();
std
::
ostringstream
err
;
if
(
idxa
.
num_nodes
()
!=
idxb
.
num_nodes
())
{
err
<<
"Number of nodes mismatch"
;
err
<<
"Number of nodes mismatch
("
<<
idxa
.
num_nodes
()
<<
" v.s "
<<
idxb
.
num_nodes
()
<<
")
"
;
return
err
.
str
();
}
if
(
idxa
.
num_node_entries
()
!=
idxb
.
num_node_entries
())
{
...
...
nnvm/tests/python/frontend/mxnet/model_zoo/__init__.py
View file @
a80356bb
"""MXNet and NNVM model zoo."""
from
__future__
import
absolute_import
from
.
import
mlp
,
resnet
,
vgg
,
dqn
,
dcgan
,
squeezenet
from
.
import
mlp
,
resnet
,
vgg
,
dqn
,
dcgan
,
squeezenet
,
inception_v3
import
nnvm.testing
__all__
=
[
'mx_mlp'
,
'nnvm_mlp'
,
'mx_resnet'
,
'nnvm_resnet'
,
'mx_vgg'
,
'nnvm_vgg'
,
'mx_squeezenet'
,
'nnvm_squeezenet'
]
_num_class
=
1000
# mlp fc
...
...
@@ -35,6 +32,10 @@ for version in ['1.0', '1.1']:
mx_squeezenet
[
version
]
=
squeezenet
.
get_symbol
(
version
=
version
)
nnvm_squeezenet
[
version
]
=
nnvm
.
testing
.
squeezenet
.
get_workload
(
1
,
version
=
version
)[
0
]
# inception
mx_inception_v3
=
inception_v3
.
get_symbol
()
nnvm_inception_v3
=
nnvm
.
testing
.
inception_v3
.
get_workload
(
1
)[
0
]
# dqn
mx_dqn
=
dqn
.
get_symbol
()
nnvm_dqn
=
nnvm
.
testing
.
dqn
.
get_workload
(
1
)[
0
]
...
...
nnvm/tests/python/frontend/mxnet/model_zoo/inception_v3.py
0 → 100644
View file @
a80356bb
"""
Inception V3, suitable for images with around 299 x 299
Reference:
Szegedy, Christian, et al. "Rethinking the Inception Architecture for Computer Vision." arXiv preprint arXiv:1512.00567 (2015).
Adopted from https://github.com/apache/incubator-mxnet/blob/
master/example/image-classification/symbols/inception-v3.py
"""
import
mxnet
as
mx
import
numpy
as
np
def
Conv
(
data
,
num_filter
,
kernel
=
(
1
,
1
),
stride
=
(
1
,
1
),
pad
=
(
0
,
0
),
name
=
None
,
suffix
=
''
):
conv
=
mx
.
sym
.
Convolution
(
data
=
data
,
num_filter
=
num_filter
,
kernel
=
kernel
,
stride
=
stride
,
pad
=
pad
,
no_bias
=
True
,
name
=
'
%
s
%
s_conv2d'
%
(
name
,
suffix
))
bn
=
mx
.
sym
.
BatchNorm
(
data
=
conv
,
eps
=
2e-5
,
name
=
'
%
s
%
s_batchnorm'
%
(
name
,
suffix
))
act
=
mx
.
sym
.
Activation
(
data
=
bn
,
act_type
=
'relu'
,
name
=
'
%
s
%
s_relu'
%
(
name
,
suffix
))
return
act
def
Inception7A
(
data
,
num_1x1
,
num_3x3_red
,
num_3x3_1
,
num_3x3_2
,
num_5x5_red
,
num_5x5
,
pool
,
proj
,
name
):
tower_1x1
=
Conv
(
data
,
num_1x1
,
name
=
(
'
%
s_conv'
%
name
))
tower_5x5
=
Conv
(
data
,
num_5x5_red
,
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv'
)
tower_5x5
=
Conv
(
tower_5x5
,
num_5x5
,
kernel
=
(
5
,
5
),
pad
=
(
2
,
2
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv_1'
)
tower_3x3
=
Conv
(
data
,
num_3x3_red
,
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv'
)
tower_3x3
=
Conv
(
tower_3x3
,
num_3x3_1
,
kernel
=
(
3
,
3
),
pad
=
(
1
,
1
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_1'
)
tower_3x3
=
Conv
(
tower_3x3
,
num_3x3_2
,
kernel
=
(
3
,
3
),
pad
=
(
1
,
1
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_2'
)
pooling
=
mx
.
sym
.
Pooling
(
data
=
data
,
kernel
=
(
3
,
3
),
stride
=
(
1
,
1
),
pad
=
(
1
,
1
),
pool_type
=
pool
,
name
=
(
'
%
s_pool_
%
s_pool'
%
(
pool
,
name
)))
cproj
=
Conv
(
pooling
,
proj
,
name
=
(
'
%
s_tower_2'
%
name
),
suffix
=
'_conv'
)
concat
=
mx
.
sym
.
Concat
(
*
[
tower_1x1
,
tower_5x5
,
tower_3x3
,
cproj
],
name
=
'ch_concat_
%
s_chconcat'
%
name
)
return
concat
# First Downsample
def
Inception7B
(
data
,
num_3x3
,
num_d3x3_red
,
num_d3x3_1
,
num_d3x3_2
,
pool
,
name
):
tower_3x3
=
Conv
(
data
,
num_3x3
,
kernel
=
(
3
,
3
),
pad
=
(
0
,
0
),
stride
=
(
2
,
2
),
name
=
(
'
%
s_conv'
%
name
))
tower_d3x3
=
Conv
(
data
,
num_d3x3_red
,
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv'
)
tower_d3x3
=
Conv
(
tower_d3x3
,
num_d3x3_1
,
kernel
=
(
3
,
3
),
pad
=
(
1
,
1
),
stride
=
(
1
,
1
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv_1'
)
tower_d3x3
=
Conv
(
tower_d3x3
,
num_d3x3_2
,
kernel
=
(
3
,
3
),
pad
=
(
0
,
0
),
stride
=
(
2
,
2
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv_2'
)
pooling
=
mx
.
sym
.
Pooling
(
data
=
data
,
kernel
=
(
3
,
3
),
stride
=
(
2
,
2
),
pad
=
(
0
,
0
),
pool_type
=
"max"
,
name
=
(
'max_pool_
%
s_pool'
%
name
))
concat
=
mx
.
sym
.
Concat
(
*
[
tower_3x3
,
tower_d3x3
,
pooling
],
name
=
'ch_concat_
%
s_chconcat'
%
name
)
return
concat
def
Inception7C
(
data
,
num_1x1
,
num_d7_red
,
num_d7_1
,
num_d7_2
,
num_q7_red
,
num_q7_1
,
num_q7_2
,
num_q7_3
,
num_q7_4
,
pool
,
proj
,
name
):
tower_1x1
=
Conv
(
data
=
data
,
num_filter
=
num_1x1
,
kernel
=
(
1
,
1
),
name
=
(
'
%
s_conv'
%
name
))
tower_d7
=
Conv
(
data
=
data
,
num_filter
=
num_d7_red
,
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv'
)
tower_d7
=
Conv
(
data
=
tower_d7
,
num_filter
=
num_d7_1
,
kernel
=
(
1
,
7
),
pad
=
(
0
,
3
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv_1'
)
tower_d7
=
Conv
(
data
=
tower_d7
,
num_filter
=
num_d7_2
,
kernel
=
(
7
,
1
),
pad
=
(
3
,
0
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv_2'
)
tower_q7
=
Conv
(
data
=
data
,
num_filter
=
num_q7_red
,
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv'
)
tower_q7
=
Conv
(
data
=
tower_q7
,
num_filter
=
num_q7_1
,
kernel
=
(
7
,
1
),
pad
=
(
3
,
0
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_1'
)
tower_q7
=
Conv
(
data
=
tower_q7
,
num_filter
=
num_q7_2
,
kernel
=
(
1
,
7
),
pad
=
(
0
,
3
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_2'
)
tower_q7
=
Conv
(
data
=
tower_q7
,
num_filter
=
num_q7_3
,
kernel
=
(
7
,
1
),
pad
=
(
3
,
0
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_3'
)
tower_q7
=
Conv
(
data
=
tower_q7
,
num_filter
=
num_q7_4
,
kernel
=
(
1
,
7
),
pad
=
(
0
,
3
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_4'
)
pooling
=
mx
.
sym
.
Pooling
(
data
=
data
,
kernel
=
(
3
,
3
),
stride
=
(
1
,
1
),
pad
=
(
1
,
1
),
pool_type
=
pool
,
name
=
(
'
%
s_pool_
%
s_pool'
%
(
pool
,
name
)))
cproj
=
Conv
(
data
=
pooling
,
num_filter
=
proj
,
kernel
=
(
1
,
1
),
name
=
(
'
%
s_tower_2'
%
name
),
suffix
=
'_conv'
)
# concat
concat
=
mx
.
sym
.
Concat
(
*
[
tower_1x1
,
tower_d7
,
tower_q7
,
cproj
],
name
=
'ch_concat_
%
s_chconcat'
%
name
)
return
concat
def
Inception7D
(
data
,
num_3x3_red
,
num_3x3
,
num_d7_3x3_red
,
num_d7_1
,
num_d7_2
,
num_d7_3x3
,
pool
,
name
):
tower_3x3
=
Conv
(
data
=
data
,
num_filter
=
num_3x3_red
,
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv'
)
tower_3x3
=
Conv
(
data
=
tower_3x3
,
num_filter
=
num_3x3
,
kernel
=
(
3
,
3
),
pad
=
(
0
,
0
),
stride
=
(
2
,
2
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv_1'
)
tower_d7_3x3
=
Conv
(
data
=
data
,
num_filter
=
num_d7_3x3_red
,
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv'
)
tower_d7_3x3
=
Conv
(
data
=
tower_d7_3x3
,
num_filter
=
num_d7_1
,
kernel
=
(
1
,
7
),
pad
=
(
0
,
3
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_1'
)
tower_d7_3x3
=
Conv
(
data
=
tower_d7_3x3
,
num_filter
=
num_d7_2
,
kernel
=
(
7
,
1
),
pad
=
(
3
,
0
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_2'
)
tower_d7_3x3
=
Conv
(
data
=
tower_d7_3x3
,
num_filter
=
num_d7_3x3
,
kernel
=
(
3
,
3
),
stride
=
(
2
,
2
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_3'
)
pooling
=
mx
.
sym
.
Pooling
(
data
=
data
,
kernel
=
(
3
,
3
),
stride
=
(
2
,
2
),
pool_type
=
pool
,
name
=
(
'
%
s_pool_
%
s_pool'
%
(
pool
,
name
)))
# concat
concat
=
mx
.
sym
.
Concat
(
*
[
tower_3x3
,
tower_d7_3x3
,
pooling
],
name
=
'ch_concat_
%
s_chconcat'
%
name
)
return
concat
def
Inception7E
(
data
,
num_1x1
,
num_d3_red
,
num_d3_1
,
num_d3_2
,
num_3x3_d3_red
,
num_3x3
,
num_3x3_d3_1
,
num_3x3_d3_2
,
pool
,
proj
,
name
):
tower_1x1
=
Conv
(
data
=
data
,
num_filter
=
num_1x1
,
kernel
=
(
1
,
1
),
name
=
(
'
%
s_conv'
%
name
))
tower_d3
=
Conv
(
data
=
data
,
num_filter
=
num_d3_red
,
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_conv'
)
tower_d3_a
=
Conv
(
data
=
tower_d3
,
num_filter
=
num_d3_1
,
kernel
=
(
1
,
3
),
pad
=
(
0
,
1
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_mixed_conv'
)
tower_d3_b
=
Conv
(
data
=
tower_d3
,
num_filter
=
num_d3_2
,
kernel
=
(
3
,
1
),
pad
=
(
1
,
0
),
name
=
(
'
%
s_tower'
%
name
),
suffix
=
'_mixed_conv_1'
)
tower_3x3_d3
=
Conv
(
data
=
data
,
num_filter
=
num_3x3_d3_red
,
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv'
)
tower_3x3_d3
=
Conv
(
data
=
tower_3x3_d3
,
num_filter
=
num_3x3
,
kernel
=
(
3
,
3
),
pad
=
(
1
,
1
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_conv_1'
)
tower_3x3_d3_a
=
Conv
(
data
=
tower_3x3_d3
,
num_filter
=
num_3x3_d3_1
,
kernel
=
(
1
,
3
),
pad
=
(
0
,
1
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_mixed_conv'
)
tower_3x3_d3_b
=
Conv
(
data
=
tower_3x3_d3
,
num_filter
=
num_3x3_d3_2
,
kernel
=
(
3
,
1
),
pad
=
(
1
,
0
),
name
=
(
'
%
s_tower_1'
%
name
),
suffix
=
'_mixed_conv_1'
)
pooling
=
mx
.
sym
.
Pooling
(
data
=
data
,
kernel
=
(
3
,
3
),
stride
=
(
1
,
1
),
pad
=
(
1
,
1
),
pool_type
=
pool
,
name
=
(
'
%
s_pool_
%
s_pool'
%
(
pool
,
name
)))
cproj
=
Conv
(
data
=
pooling
,
num_filter
=
proj
,
kernel
=
(
1
,
1
),
name
=
(
'
%
s_tower_2'
%
name
),
suffix
=
'_conv'
)
# concat
concat
=
mx
.
sym
.
Concat
(
*
[
tower_1x1
,
tower_d3_a
,
tower_d3_b
,
tower_3x3_d3_a
,
tower_3x3_d3_b
,
cproj
],
name
=
'ch_concat_
%
s_chconcat'
%
name
)
return
concat
def
get_symbol
(
num_classes
=
1000
,
**
kwargs
):
data
=
mx
.
sym
.
Variable
(
name
=
"data"
)
# stage 1
conv
=
Conv
(
data
,
32
,
kernel
=
(
3
,
3
),
stride
=
(
2
,
2
),
name
=
"conv"
)
conv_1
=
Conv
(
conv
,
32
,
kernel
=
(
3
,
3
),
name
=
"conv_1"
)
conv_2
=
Conv
(
conv_1
,
64
,
kernel
=
(
3
,
3
),
pad
=
(
1
,
1
),
name
=
"conv_2"
)
pool
=
mx
.
sym
.
Pooling
(
data
=
conv_2
,
kernel
=
(
3
,
3
),
stride
=
(
2
,
2
),
pool_type
=
"max"
,
name
=
"pool"
)
# stage 2
conv_3
=
Conv
(
pool
,
80
,
kernel
=
(
1
,
1
),
name
=
"conv_3"
)
conv_4
=
Conv
(
conv_3
,
192
,
kernel
=
(
3
,
3
),
name
=
"conv_4"
)
pool1
=
mx
.
sym
.
Pooling
(
data
=
conv_4
,
kernel
=
(
3
,
3
),
stride
=
(
2
,
2
),
pool_type
=
"max"
,
name
=
"pool1"
)
# # stage 3
in3a
=
Inception7A
(
pool1
,
64
,
64
,
96
,
96
,
48
,
64
,
"avg"
,
32
,
"mixed"
)
in3b
=
Inception7A
(
in3a
,
64
,
64
,
96
,
96
,
48
,
64
,
"avg"
,
64
,
"mixed_1"
)
in3c
=
Inception7A
(
in3b
,
64
,
64
,
96
,
96
,
48
,
64
,
"avg"
,
64
,
"mixed_2"
)
in3d
=
Inception7B
(
in3c
,
384
,
64
,
96
,
96
,
"max"
,
"mixed_3"
)
# stage 4
in4a
=
Inception7C
(
in3d
,
192
,
128
,
128
,
192
,
128
,
128
,
128
,
128
,
192
,
"avg"
,
192
,
"mixed_4"
)
in4b
=
Inception7C
(
in4a
,
192
,
160
,
160
,
192
,
160
,
160
,
160
,
160
,
192
,
"avg"
,
192
,
"mixed_5"
)
in4c
=
Inception7C
(
in4b
,
192
,
160
,
160
,
192
,
160
,
160
,
160
,
160
,
192
,
"avg"
,
192
,
"mixed_6"
)
in4d
=
Inception7C
(
in4c
,
192
,
192
,
192
,
192
,
192
,
192
,
192
,
192
,
192
,
"avg"
,
192
,
"mixed_7"
)
in4e
=
Inception7D
(
in4d
,
192
,
320
,
192
,
192
,
192
,
192
,
"max"
,
"mixed_8"
)
# stage 5
in5a
=
Inception7E
(
in4e
,
320
,
384
,
384
,
384
,
448
,
384
,
384
,
384
,
"avg"
,
192
,
"mixed_9"
)
in5b
=
Inception7E
(
in5a
,
320
,
384
,
384
,
384
,
448
,
384
,
384
,
384
,
"max"
,
192
,
"mixed_10"
)
# pool
pool
=
mx
.
sym
.
Pooling
(
data
=
in5b
,
kernel
=
(
8
,
8
),
stride
=
(
1
,
1
),
pool_type
=
"avg"
,
name
=
"global_pool"
)
flatten
=
mx
.
sym
.
Flatten
(
data
=
pool
,
name
=
"flatten"
)
fc1
=
mx
.
sym
.
FullyConnected
(
data
=
flatten
,
num_hidden
=
num_classes
,
name
=
'fc1'
,
flatten
=
False
)
softmax
=
mx
.
sym
.
SoftmaxOutput
(
data
=
fc1
,
name
=
'softmax'
)
return
softmax
nnvm/tests/python/frontend/mxnet/test_graph.py
View file @
a80356bb
...
...
@@ -39,17 +39,23 @@ def test_squeezenet():
nnvm_sym
=
model_zoo
.
nnvm_squeezenet
[
version
]
compare_graph
(
from_mx_sym
,
nnvm_sym
)
def
test_inception_v3
():
mx_sym
=
model_zoo
.
mx_inception_v3
from_mx_sym
,
_
=
nnvm
.
frontend
.
from_mxnet
(
mx_sym
)
nnvm_sym
=
model_zoo
.
nnvm_inception_v3
compare_graph
(
from_mx_sym
,
nnvm_sym
,
ishape
=
(
2
,
3
,
299
,
299
))
def
test_dqn
():
mx_sym
=
model_zoo
.
mx_dqn
from_mx_sym
,
_
=
nnvm
.
frontend
.
from_mxnet
(
mx_sym
)
nnvm_sym
=
model_zoo
.
nnvm_dqn
compare_graph
(
from_mx_sym
,
nnvm_sym
)
compare_graph
(
from_mx_sym
,
nnvm_sym
,
ishape
=
(
2
,
4
,
84
,
84
)
)
def
test_dcgan
():
mx_sym
=
model_zoo
.
mx_dcgan
from_mx_sym
,
_
=
nnvm
.
frontend
.
from_mxnet
(
mx_sym
)
nnvm_sym
=
model_zoo
.
nnvm_dcgan
compare_graph
(
from_mx_sym
,
nnvm_sym
)
compare_graph
(
from_mx_sym
,
nnvm_sym
,
ishape
=
(
2
,
100
)
)
def
test_multi_outputs
():
def
compose
(
F
,
**
kwargs
):
...
...
@@ -70,3 +76,4 @@ if __name__ == '__main__':
test_dqn
()
test_dcgan
()
test_squeezenet
()
test_inception_v3
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment