Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
a711f38e
Commit
a711f38e
authored
Aug 31, 2019
by
SWu
Committed by
Wuwei Lin
Aug 31, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Improve numerical gradient check (#3856)
parent
2ebf1bd1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
62 additions
and
63 deletions
+62
-63
python/tvm/relay/testing/__init__.py
+62
-63
No files found.
python/tvm/relay/testing/__init__.py
View file @
a711f38e
...
...
@@ -56,72 +56,71 @@ def run_infer_type(expr):
return
run_opt_pass
(
expr
,
transform
.
InferType
())
def
rand_from_type
(
t
):
return
relay
.
Constant
(
rand
(
t
.
dtype
,
*
[
int
(
d
)
for
d
in
t
.
shape
])
)
def
_np_randn_from_type
(
t
,
scale
=
1
):
return
(
scale
*
np
.
random
.
randn
(
*
(
int
(
d
)
for
d
in
t
.
shape
)))
.
astype
(
t
.
dtype
)
CHECK_GRAD_COUNTER
=
0
def
check_grad
(
func
,
mod
=
None
):
"""
Test that directional gradient calculated by reverse mode
is close to the one calculated by finite difference.
def
check_grad
(
func
,
inputs
=
None
,
eps
=
1e-6
,
atol
=
1e-5
,
rtol
=
1e-3
):
"""Perform numerical gradient checking given a relay function.
Compare analytical gradients to numerical gradients derived from two-sided approximation. Note
that this test may fail if your function input types are not of high enough precision.
Parameters
----------
func : tvm.relay.Function
The relay function to test.
inputs: List[np.array]
Optional user-provided input parameters to use. If not given, will generate random normal
inputs scaled to be close to the chosen epsilon value to avoid numerical precision loss.
eps: float
The epsilon value to use for computing numerical gradient approximation.
atol: float
The absolute tolerance on difference between numerical and analytical gradients. Note that
this needs to be scaled appropriately relative to the chosen eps and inputs.
rtol: float
The relative tolerance on difference between numerical and analytical gradients. Note that
this needs to be scaled appropriately relative to the chosen eps.
"""
global
CHECK_GRAD_COUNTER
if
mod
is
None
:
mod
=
relay
.
Module
()
def
make
(
name
):
return
GlobalVar
(
name
+
str
(
CHECK_GRAD_COUNTER
))
func_name
=
make
(
"func_"
)
back_func_name
=
make
(
"back_func_"
)
finite_difference_func_name
=
make
(
"finite_difference_"
)
reverse_mode_func_name
=
make
(
"reverse_mode_"
)
check_func_name
=
make
(
"check_func_"
)
CHECK_GRAD_COUNTER
=
CHECK_GRAD_COUNTER
+
1
epsilon
=
relay
.
const
(
0.01
)
mod
[
func_name
]
=
func
mod
[
back_func_name
]
=
gradient
(
mod
[
func_name
],
mod
=
mod
)
params
=
mod
[
func_name
]
.
params
directions
=
[
rand_from_type
(
x
.
checked_type
)
for
x
in
params
]
ft
=
TensorType
(())
sb
=
ScopeBuilder
()
def
get_reverse_mode_result
(
e
,
d
,
t
):
assert
isinstance
(
t
,
TensorType
)
return
op
.
cast
(
e
*
d
,
'float32'
)
bf
=
sb
.
let
(
"bf"
,
TupleGetItem
(
back_func_name
(
*
params
),
1
))
reverse_mode_results
=
[
get_reverse_mode_result
(
TupleGetItem
(
bf
,
i
),
directions
[
i
],
x
.
checked_type
)
for
i
,
x
in
enumerate
(
params
)]
reverse_mode_result
=
relay
.
const
(
0.0
)
for
x
in
reverse_mode_results
:
reverse_mode_result
=
reverse_mode_result
+
op
.
reduce
.
sum
(
x
)
sb
.
ret
(
reverse_mode_result
)
reverse_mode_result
=
sb
.
get
()
mod
[
reverse_mode_func_name
]
=
Function
(
params
,
reverse_mode_result
,
ft
,
mod
[
func_name
]
.
type_params
,
mod
[
func_name
]
.
attrs
)
finite_difference_result
=
op
.
reduce
.
sum
((
func_name
(
*
[
x
+
epsilon
*
y
for
x
,
y
in
zip
(
params
,
directions
)])
-
func_name
(
*
params
))
/
epsilon
)
mod
[
finite_difference_func_name
]
=
Function
(
params
,
finite_difference_result
,
ft
,
mod
[
func_name
]
.
type_params
,
mod
[
func_name
]
.
attrs
)
check_func_result
=
op
.
abs
(
reverse_mode_func_name
(
*
params
)
-
finite_difference_func_name
(
*
params
))
mod
[
check_func_name
]
=
Function
(
params
,
check_func_result
,
ft
,
mod
[
func_name
]
.
type_params
,
mod
[
func_name
]
.
attrs
)
ex
=
create_executor
(
mod
=
mod
)
res
=
ex
.
evaluate
(
check_func_name
(
*
[
rand_from_type
(
x
.
checked_type
)
for
x
in
params
]))
assert
res
.
data
.
asnumpy
()
<
0.001
fwd_func
=
run_infer_type
(
func
)
bwd_func
=
run_infer_type
(
gradient
(
fwd_func
))
if
inputs
is
None
:
params
=
fwd_func
.
params
# Generate random inputs on the same scale as epsilon to avoid numerical precision loss.
inputs
=
[
_np_randn_from_type
(
x
.
checked_type
,
scale
=
(
10
*
eps
))
for
x
in
params
]
for
target
,
ctx
in
ctx_list
():
intrp
=
relay
.
create_executor
(
ctx
=
ctx
,
target
=
target
)
# Get analytic gradients.
_
,
grads
=
intrp
.
evaluate
(
bwd_func
)(
*
inputs
)
grads
=
[
grad
.
asnumpy
()
.
astype
(
"float64"
)
for
grad
in
grads
]
# Get numeric gradients for each dimension of each param, using two-sided approximation.
approx_grads
=
[]
for
x
in
inputs
:
approx_grad
=
np
.
zeros
(
x
.
shape
)
for
i
in
np
.
ndindex
(
*
x
.
shape
):
x_i
=
x
[
i
]
x
[
i
]
=
x_i
+
eps
fwd_plus
=
intrp
.
evaluate
(
fwd_func
)(
*
inputs
)
.
asnumpy
()
.
astype
(
"float64"
)
x
[
i
]
=
x_i
-
eps
fwd_minus
=
intrp
.
evaluate
(
fwd_func
)(
*
inputs
)
.
asnumpy
()
.
astype
(
"float64"
)
x
[
i
]
=
x_i
approx_grad
[
i
]
=
np
.
sum
((
fwd_plus
-
fwd_minus
)
/
(
2
*
eps
))
approx_grads
.
append
(
approx_grad
)
# Compare gradients by checking that relative difference is below tolerance.
for
grad
,
approx_grad
in
zip
(
grads
,
approx_grads
):
np
.
testing
.
assert_allclose
(
grad
,
approx_grad
,
atol
=
atol
,
rtol
=
rtol
)
def
rand
(
dtype
,
*
shape
):
return
tvm
.
nd
.
array
(
np
.
random
.
rand
(
*
shape
)
.
astype
(
dtype
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment