Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
a53d8d01
Commit
a53d8d01
authored
Apr 01, 2018
by
Tianqi Chen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[PASS] Enhance scale fold axis (#424)
parent
89c124bc
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
71 additions
and
10 deletions
+71
-10
nnvm/src/compiler/fold_scale_axis.cc
+0
-0
nnvm/src/pass/plan_memory.cc
+1
-1
nnvm/tests/python/compiler/test_fold_axis.py
+70
-9
No files found.
nnvm/src/compiler/fold_scale_axis.cc
View file @
a53d8d01
This diff is collapsed.
Click to expand it.
nnvm/src/pass/plan_memory.cc
View file @
a53d8d01
...
...
@@ -196,7 +196,7 @@ size_t AllocMemory(const Graph& ret, const IndexedGraph& idx,
if
(
taken
[
kv
.
first
]
==
false
&&
sid_out
==
GraphAllocator
::
kBadStorageID
&&
sid_in
>=
0
&&
(
storage_ref_count
[
sid_in
]
==
1
&&
!
ignore_all_inputs
||
identity
[
ipair
])
&&
(
(
storage_ref_count
[
sid_in
]
==
1
&&
!
ignore_all_inputs
)
||
identity
[
ipair
])
&&
entry_ref_count
[
eid_out
]
>
0
&&
shape_vec
[
eid_out
].
Size
()
==
shape_vec
[
eid_in
].
Size
()
&&
dtype_vec
[
eid_out
]
==
dtype_vec
[
eid_in
])
{
...
...
nnvm/tests/python/compiler/test_fold_axis.py
View file @
a53d8d01
"""Unittest cases for fold_axis"""
import
nnvm
import
nnvm.testing.resnet
import
numpy
as
np
from
nnvm
import
symbol
as
sym
from
nnvm.compiler
import
graph_util
,
graph_attr
def
test_fold_axis_conv
():
def
before
(
x
,
conv_weight
,
conv_bias
,
scale
,
channels
):
def
before
(
x
,
conv_weight
,
conv_bias
,
in_scale
,
out_scale
,
channels
):
x
=
x
*
sym
.
expand_dims
(
in_scale
,
axis
=
1
,
num_newaxis
=
2
)
y
=
sym
.
conv2d
(
x
,
conv_weight
,
conv_bias
,
channels
=
channels
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
name
=
"conv"
)
y
=
sym
.
relu
(
y
)
y
=
y
*
sym
.
expand_dims
(
scale
,
axis
=
1
,
num_newaxis
=
2
)
y
=
y
*
sym
.
expand_dims
(
out_
scale
,
axis
=
1
,
num_newaxis
=
2
)
return
y
def
expected
(
x
,
conv_weight
,
conv_bias
,
scale
,
channels
):
conv_weight
=
conv_weight
*
sym
.
expand_dims
(
scale
,
axis
=
1
,
num_newaxis
=
3
)
conv_bias
=
conv_bias
*
scale
def
expected
(
x
,
conv_weight
,
conv_bias
,
in_scale
,
out_scale
,
channels
):
conv_weight
=
conv_weight
*
sym
.
expand_dims
(
out_scale
,
axis
=
1
,
num_newaxis
=
3
)
conv_weight
=
conv_weight
*
sym
.
expand_dims
(
in_scale
,
axis
=
1
,
num_newaxis
=
2
)
conv_bias
=
conv_bias
*
out_scale
y
=
sym
.
conv2d
(
x
,
conv_weight
,
conv_bias
,
...
...
@@ -32,10 +36,11 @@ def test_fold_axis_conv():
x
=
sym
.
Variable
(
"x"
)
+
1
weight
=
sym
.
Variable
(
"weight"
)
bias
=
sym
.
Variable
(
"bias"
)
scale
=
sym
.
Variable
(
"scale"
)
y1
=
before
(
x
,
weight
,
bias
,
scale
,
channels
)
y2
=
expected
(
x
,
weight
,
bias
,
scale
,
channels
)
ishape
=
{
"x"
:
shape
,
"scale"
:
(
channels
,)}
in_scale
=
sym
.
Variable
(
"in_scale"
)
out_scale
=
sym
.
Variable
(
"out_scale"
)
y1
=
before
(
x
,
weight
,
bias
,
in_scale
,
out_scale
,
channels
)
y2
=
expected
(
x
,
weight
,
bias
,
in_scale
,
out_scale
,
channels
)
ishape
=
{
"x"
:
shape
,
"out_scale"
:
(
channels
,),
"in_scale"
:
(
shape
[
1
],)}
g1
=
nnvm
.
graph
.
create
(
y1
)
g2
=
nnvm
.
graph
.
create
(
y2
)
graph_attr
.
set_shape_inputs
(
g1
,
ishape
)
...
...
@@ -45,5 +50,61 @@ def test_fold_axis_conv():
check
((
2
,
4
,
10
,
10
),
2
)
def
test_fold_fail
():
def
before
(
x
,
scale
,
channels
):
y
=
sym
.
conv2d
(
x
,
channels
=
channels
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
name
=
"conv"
)
y
=
y
*
sym
.
expand_dims
(
scale
,
axis
=
1
,
num_newaxis
=
1
)
return
y
# Before simplify
def
check
(
shape
,
channels
):
x
=
sym
.
Variable
(
"x"
)
bias
=
sym
.
Variable
(
"bias"
)
scale
=
sym
.
Variable
(
"scale"
)
y1
=
before
(
x
,
scale
,
channels
)
ishape
=
{
"x"
:
shape
,
"scale"
:
(
channels
,),
"bias"
:
(
channels
,)}
g1
=
nnvm
.
graph
.
create
(
y1
)
graph_attr
.
set_shape_inputs
(
g1
,
ishape
)
g2
=
g1
.
apply
(
"InferShape"
)
.
apply
(
"FoldScaleAxis"
)
# assert graph equals as expected
graph_util
.
check_graph_equal
(
g1
,
g2
)
check
((
2
,
10
,
10
,
10
),
10
)
def
test_fold_resnet
():
batch_size
=
1
num_classes
=
1000
image_shape
=
(
3
,
224
,
224
)
data_shape
=
(
batch_size
,)
+
image_shape
net
,
params
=
nnvm
.
testing
.
resnet
.
get_workload
(
batch_size
=
1
,
image_shape
=
image_shape
)
ishape
=
{
"data"
:
data_shape
}
graph
=
nnvm
.
graph
.
create
(
net
)
data
=
np
.
random
.
uniform
(
size
=
data_shape
)
.
astype
(
"float32"
)
# Initial pass do shape type inference
shape
,
_
=
graph_util
.
infer_shape
(
graph
,
**
ishape
)
ishape
.
update
(
zip
(
graph
.
index
.
input_names
,
shape
))
def
run_prune
(
graph
,
params
,
opt_level
):
# Apply optimization
with
nnvm
.
compiler
.
build_config
(
opt_level
=
0
):
graph
=
nnvm
.
compiler
.
optimize
(
graph
,
ishape
)
graph
,
params
=
nnvm
.
compiler
.
build_module
.
precompute_prune
(
graph
,
params
)
params
[
"data"
]
=
data
return
nnvm
.
compiler
.
build_module
.
_run_graph
(
graph
,
params
)
x
=
run_prune
(
graph
,
params
,
0
)
y
=
run_prune
(
graph
,
params
,
3
)
np
.
testing
.
assert_allclose
(
y
[
0
]
.
asnumpy
(),
x
[
0
]
.
asnumpy
())
if
__name__
==
"__main__"
:
test_fold_resnet
()
test_fold_axis_conv
()
test_fold_fail
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment