Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
a1b6f469
Commit
a1b6f469
authored
Dec 01, 2019
by
Alexander Pivovarov
Committed by
Tianqi Chen
Dec 01, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TFLite] Add transpose_conv to TFLite parser (#4440)
parent
2bf5fd2b
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
135 additions
and
1 deletions
+135
-1
python/tvm/relay/frontend/tflite.py
+80
-1
tests/python/frontend/tflite/test_forward.py
+55
-0
No files found.
python/tvm/relay/frontend/tflite.py
View file @
a1b6f469
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
# KIND, either express or implied. See the License for the
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# specific language governing permissions and limitations
# under the License.
# under the License.
# pylint: disable=invalid-name, unused-argument
# pylint: disable=invalid-name, unused-argument
, too-many-lines
"""Tensorflow lite frontend."""
"""Tensorflow lite frontend."""
from
__future__
import
absolute_import
as
_abs
from
__future__
import
absolute_import
as
_abs
import
math
import
math
...
@@ -96,6 +96,7 @@ class OperatorConverter(object):
...
@@ -96,6 +96,7 @@ class OperatorConverter(object):
'BATCH_TO_SPACE_ND'
:
self
.
convert_batch_to_space_nd
,
'BATCH_TO_SPACE_ND'
:
self
.
convert_batch_to_space_nd
,
'SPACE_TO_BATCH_ND'
:
self
.
convert_space_to_batch_nd
,
'SPACE_TO_BATCH_ND'
:
self
.
convert_space_to_batch_nd
,
'PRELU'
:
self
.
convert_prelu
,
'PRELU'
:
self
.
convert_prelu
,
'TRANSPOSE_CONV'
:
self
.
convert_transpose_conv
,
}
}
def
check_unsupported_ops
(
self
):
def
check_unsupported_ops
(
self
):
...
@@ -1370,6 +1371,84 @@ class OperatorConverter(object):
...
@@ -1370,6 +1371,84 @@ class OperatorConverter(object):
return
out
return
out
def
convert_transpose_conv
(
self
,
op
):
"""Convert TFLite TRANSPOSE_CONV"""
try
:
from
tflite.BuiltinOptions
import
BuiltinOptions
from
tflite.TensorType
import
TensorType
from
tflite.Operator
import
Operator
from
tflite.TransposeConvOptions
import
TransposeConvOptions
from
tflite.Padding
import
Padding
except
ImportError
:
raise
ImportError
(
"The tflite package must be installed"
)
assert
isinstance
(
op
,
Operator
)
input_tensors
=
self
.
get_input_tensors
(
op
)
assert
len
(
input_tensors
)
==
3
,
"input tensors length should be 3"
# Input (data) Tensor. NHWC layout
input_tensor
=
input_tensors
[
2
]
_
,
_
,
_
,
input_c
=
input_tensor
.
tensor
.
ShapeAsNumpy
()
# Weights tensor. TFLite uses OHWI layout
weights_tensor
=
input_tensors
[
1
]
out_channels
,
kernel_h
,
kernel_w
,
in_channels
=
weights_tensor
.
tensor
.
ShapeAsNumpy
()
assert
input_c
==
in_channels
,
\
"Input channel in the filter should match to channel in the input"
# output_shape Tensor. NHWC layout
output_shape_tensor
=
input_tensors
[
0
]
output_tensors
=
self
.
get_output_tensors
(
op
)
assert
len
(
output_tensors
)
==
1
,
"output tensors length should be 1"
output_tensor
=
output_tensors
[
0
]
output_tensor_type
=
output_tensor
.
tensor
.
Type
()
output_tensor_type_str
=
self
.
get_tensor_type_str
(
output_tensor_type
)
assert
op
.
BuiltinOptionsType
()
==
BuiltinOptions
.
TransposeConvOptions
op_options
=
op
.
BuiltinOptions
()
deconv_options
=
TransposeConvOptions
()
deconv_options
.
Init
(
op_options
.
Bytes
,
op_options
.
Pos
)
padding
=
deconv_options
.
Padding
()
stride_h
=
deconv_options
.
StrideH
()
stride_w
=
deconv_options
.
StrideW
()
assert
padding
in
(
Padding
.
VALID
,
Padding
.
SAME
),
\
'Padding format {} is not supported for operator TRANSPOSE_CONV'
.
format
(
padding
)
# Data
in_expr
=
self
.
get_expr
(
input_tensor
.
tensor_idx
)
# Weights
weights_tensor_type
=
weights_tensor
.
tensor
.
Type
()
# weights tensor type should be UINT8 (quantization) or FLOAT32
assert
weights_tensor_type
in
(
TensorType
.
UINT8
,
TensorType
.
FLOAT32
)
weight_tensor_type_str
=
self
.
get_tensor_type_str
(
weights_tensor_type
)
weight_value_ohwi
=
self
.
get_tensor_value
(
weights_tensor
)
# Relay kernel_layout should be OIHW
# Relay weights layout should be different from kernel_layout - it should be IOHW
weight_value_iohw
=
np
.
transpose
(
weight_value_ohwi
,
(
3
,
0
,
1
,
2
))
weight_expr_iohw
=
self
.
exp_tab
.
new_const
(
weight_value_iohw
,
dtype
=
weight_tensor_type_str
)
# Output shape value
output_shape_value
=
self
.
get_tensor_value
(
output_shape_tensor
)
# Relay expects filter output channel to match to output tensor channel.
assert
out_channels
==
output_shape_value
[
3
],
\
"Output channel in the filter should match to channel in the output_shape"
# TF frontend supports 'SAME' padding for kernel 1x1 only. Lets do the same here
if
padding
==
Padding
.
SAME
:
assert
(
kernel_h
,
kernel_w
)
==
(
1
,
1
),
\
"SAME padding is supported for kernel (1,1) only"
out
=
_op
.
nn
.
conv2d_transpose
(
in_expr
,
weight_expr_iohw
,
strides
=
(
stride_h
,
stride_w
),
channels
=
int
(
out_channels
),
kernel_size
=
(
int
(
kernel_h
),
int
(
kernel_w
)),
data_layout
=
"NHWC"
,
kernel_layout
=
"OIHW"
,
out_dtype
=
output_tensor_type_str
)
return
out
def
get_expr
(
self
,
input_tensor_idx
):
def
get_expr
(
self
,
input_tensor_idx
):
return
self
.
exp_tab
.
get_expr
(
get_tensor_name
(
self
.
subgraph
,
input_tensor_idx
))
return
self
.
exp_tab
.
get_expr
(
get_tensor_name
(
self
.
subgraph
,
input_tensor_idx
))
...
...
tests/python/frontend/tflite/test_forward.py
View file @
a1b6f469
...
@@ -478,6 +478,60 @@ def test_forward_convolution():
...
@@ -478,6 +478,60 @@ def test_forward_convolution():
#######################################################################
#######################################################################
# Transpose Convolution
# ---------------------
def
_test_transpose_conv
(
tensor_in_sizes
,
filter_in_sizes
,
output_shape
,
strides
,
padding
):
""" One iteration of transpose convolution with given shapes and attributes """
total_size_1
=
1
total_size_2
=
1
for
s
in
tensor_in_sizes
:
total_size_1
*=
s
for
s
in
filter_in_sizes
:
total_size_2
*=
s
# Initializes the input tensor with array containing incrementing
# numbers from 1.
data_array
=
[
f
*
1.0
for
f
in
range
(
1
,
total_size_1
+
1
)]
filter_array
=
[
f
*
1.0
for
f
in
range
(
1
,
total_size_2
+
1
)]
with
tf
.
Graph
()
.
as_default
():
in_data
=
array_ops
.
placeholder
(
shape
=
tensor_in_sizes
,
dtype
=
'float32'
)
in_filter
=
constant_op
.
constant
(
filter_array
,
shape
=
filter_in_sizes
,
dtype
=
'float32'
)
strides
=
[
1
]
+
strides
+
[
1
]
# in_filter layout is HWOI
out
=
nn_ops
.
conv2d_transpose
(
in_data
,
in_filter
,
output_shape
=
output_shape
,
strides
=
strides
,
padding
=
padding
)
data_array
=
np
.
reshape
(
data_array
,
tensor_in_sizes
)
.
astype
(
'float32'
)
compare_tflite_with_tvm
(
data_array
,
'Placeholder:0'
,
[
in_data
],
[
out
])
def
test_forward_transpose_conv
():
# kernel 3x3, padding VALID
_test_transpose_conv
([
4
,
32
,
32
,
16
],
[
3
,
3
,
5
,
16
],
[
4
,
34
,
34
,
5
],
[
1
,
1
],
'VALID'
)
_test_transpose_conv
([
1
,
32
,
32
,
16
],
[
3
,
3
,
5
,
16
],
[
1
,
65
,
65
,
5
],
[
2
,
2
],
'VALID'
)
_test_transpose_conv
([
1
,
32
,
32
,
16
],
[
3
,
3
,
5
,
16
],
[
1
,
65
,
34
,
5
],
[
2
,
1
],
'VALID'
)
# kernel 2x2, padding VALID
_test_transpose_conv
([
4
,
32
,
32
,
16
],
[
2
,
2
,
5
,
16
],
[
4
,
33
,
33
,
5
],
[
1
,
1
],
'VALID'
)
_test_transpose_conv
([
1
,
32
,
32
,
16
],
[
2
,
2
,
5
,
16
],
[
1
,
64
,
64
,
5
],
[
2
,
2
],
'VALID'
)
_test_transpose_conv
([
1
,
32
,
32
,
16
],
[
2
,
2
,
5
,
16
],
[
1
,
64
,
33
,
5
],
[
2
,
1
],
'VALID'
)
# kernel 1x1, padding VALID
_test_transpose_conv
([
4
,
32
,
32
,
16
],
[
1
,
1
,
5
,
16
],
[
4
,
32
,
32
,
5
],
[
1
,
1
],
'VALID'
)
_test_transpose_conv
([
1
,
32
,
32
,
16
],
[
1
,
1
,
5
,
16
],
[
1
,
63
,
63
,
5
],
[
2
,
2
],
'VALID'
)
_test_transpose_conv
([
1
,
32
,
32
,
16
],
[
1
,
1
,
5
,
16
],
[
1
,
63
,
32
,
5
],
[
2
,
1
],
'VALID'
)
# kernel 1x1, padding SAME
_test_transpose_conv
([
4
,
32
,
32
,
16
],
[
1
,
1
,
5
,
16
],
[
4
,
32
,
32
,
5
],
[
1
,
1
],
'SAME'
)
_test_transpose_conv
([
1
,
32
,
32
,
16
],
[
1
,
1
,
5
,
16
],
[
1
,
63
,
63
,
5
],
[
2
,
2
],
'SAME'
)
_test_transpose_conv
([
1
,
32
,
32
,
16
],
[
1
,
1
,
5
,
16
],
[
1
,
63
,
32
,
5
],
[
2
,
1
],
'SAME'
)
#######################################################################
# Reshape
# Reshape
# -------
# -------
...
@@ -1232,6 +1286,7 @@ if __name__ == '__main__':
...
@@ -1232,6 +1286,7 @@ if __name__ == '__main__':
# NN
# NN
test_forward_convolution
()
test_forward_convolution
()
test_forward_transpose_conv
()
test_forward_logistic
()
test_forward_logistic
()
test_forward_pooling
()
test_forward_pooling
()
test_forward_softmax
()
test_forward_softmax
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment