Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
9f441d81
Unverified
Commit
9f441d81
authored
Nov 09, 2018
by
Tianqi Chen
Committed by
GitHub
Nov 09, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[RELAY] CompileEngine update, nn conv2d, fix dense, pool. (#2082)
parent
933aeba2
Show whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
489 additions
and
89 deletions
+489
-89
include/tvm/relay/op_attr_types.h
+2
-1
python/tvm/relay/op/_tensor.py
+2
-7
python/tvm/relay/op/nn/__init__.py
+1
-0
python/tvm/relay/op/nn/_nn.py
+167
-9
python/tvm/relay/op/op.py
+9
-0
src/relay/backend/compile_engine.cc
+6
-1
src/relay/op/nn/nn.cc
+2
-3
src/relay/op/nn/pooling.cc
+75
-6
tests/python/relay/test_backend_interpreter.py
+0
-22
tests/python/relay/test_op_level1.py
+60
-2
tests/python/relay/test_op_level2.py
+160
-34
topi/python/topi/util.py
+5
-4
No files found.
include/tvm/relay/op_attr_types.h
View file @
9f441d81
...
...
@@ -72,7 +72,8 @@ using FTVMCompute = runtime::TypedPackedFunc<
* \return schedule The computation schedule.
*/
using
FTVMSchedule
=
runtime
::
TypedPackedFunc
<
Schedule
(
const
Array
<
Tensor
>&
outs
,
Schedule
(
const
Attrs
&
attrs
,
const
Array
<
Tensor
>&
outs
,
const
Target
&
target
)
>
;
}
// namespace relay
}
// namespace tvm
...
...
python/tvm/relay/op/_tensor.py
View file @
9f441d81
...
...
@@ -2,13 +2,8 @@
"""Backend compiler related feature registration"""
from
__future__
import
absolute_import
import
topi
import
topi.cuda
from
.op
import
register_compute
,
register_schedule
,
register_pattern
,
OpPattern
def
schedule_injective
(
outputs
,
target
):
"""Generic schedule for binary broadcast."""
with
target
:
return
topi
.
generic
.
schedule_injective
(
outputs
)
from
.op
import
register_compute
,
register_schedule
,
register_pattern
from
.op
import
schedule_injective
,
OpPattern
schedule_broadcast
=
schedule_injective
schedule_elemwise
=
schedule_injective
...
...
python/tvm/relay/op/nn/__init__.py
View file @
9f441d81
...
...
@@ -2,3 +2,4 @@
"""Neural network related operators."""
from
__future__
import
absolute_import
as
_abs
from
.nn
import
*
from
.
import
_nn
python/tvm/relay/op/nn/_nn.py
View file @
9f441d81
#pylint: disable=invalid-name, unused-argument
"""Backend compiler related feature registration"""
import
tvm
import
topi
from
..
import
register
from
topi.util
import
get_const_int
,
get_const_tuple
from
..
import
op
as
reg
from
..op
import
OpPattern
,
schedule_injective
def
dense_compiler
(
attrs
,
inputs
,
output_type
):
assert
len
(
inputs
)
==
2
# dense
@reg.register_compute
(
"nn.dense"
)
def
compute_dense
(
attrs
,
inputs
,
out_type
,
target
):
"""Compute definition of dense"""
return
[
topi
.
nn
.
dense
(
inputs
[
0
],
inputs
[
1
])]
def
dense_schedule
(
outputs
,
target
):
assert
len
(
outputs
)
==
1
return
tvm
.
create_schedule
(
outputs
[
0
]
.
op
)
@reg.register_schedule
(
"nn.dense"
)
def
schedule_dense
(
attrs
,
outputs
,
target
):
"""Schedule definition of dense"""
with
target
:
return
topi
.
generic
.
schedule_dense
(
outputs
)
register
(
"nn.dense"
,
"FTVMCompute"
,
dense_compiler
)
register
(
"nn.dense"
,
"FTVMSchedule"
,
dense_schedule
)
reg
.
register_pattern
(
"nn.dense"
,
reg
.
OpPattern
.
OUT_ELEMWISE_FUSABLE
)
# conv2d
@reg.register_compute
(
"nn.conv2d"
)
def
compute_conv2d
(
attrs
,
inputs
,
out_type
,
target
):
"""Compute definition of conv2d"""
padding
=
get_const_tuple
(
attrs
.
padding
)
strides
=
get_const_tuple
(
attrs
.
strides
)
dilation
=
get_const_tuple
(
attrs
.
dilation
)
groups
=
attrs
.
groups
layout
=
attrs
.
data_layout
weight_layout
=
attrs
.
weight_layout
out_dtype
=
attrs
.
out_dtype
out_dtype
=
(
inputs
[
0
]
.
dtype
if
(
out_dtype
==
"same"
or
out_dtype
==
""
)
else
out_dtype
)
assert
layout
in
[
"NCHW"
,
"NHWC"
,
"NCHW4c"
]
(
dilation_h
,
dilation_w
)
=
dilation
if
dilation_h
<
1
or
dilation_w
<
1
:
raise
ValueError
(
"dilation should be positive value"
)
if
groups
==
1
:
out
=
topi
.
nn
.
conv2d
(
inputs
[
0
],
inputs
[
1
],
strides
,
padding
,
dilation
,
layout
,
out_dtype
=
out_dtype
)
elif
layout
==
"NCHW"
and
\
weight_layout
==
"OIHW"
and
\
get_const_int
(
inputs
[
1
]
.
shape
[
0
])
==
groups
and
\
get_const_int
(
inputs
[
1
]
.
shape
[
1
])
==
1
:
out
=
topi
.
nn
.
depthwise_conv2d_nchw
(
inputs
[
0
],
inputs
[
1
],
strides
,
padding
,
dilation
,
out_dtype
=
out_dtype
)
elif
layout
==
"NHWC"
and
\
kernel_layout
==
"HWOI"
and
\
get_const_int
(
inputs
[
1
]
.
shape
[
2
])
==
groups
and
\
get_const_int
(
inputs
[
1
]
.
shape
[
3
])
==
1
:
out
=
topi
.
nn
.
depthwise_conv2d_nhwc
(
inputs
[
0
],
inputs
[
1
],
strides
,
padding
,
dilation
,
out_dtype
=
out_dtype
)
else
:
raise
ValueError
(
"not support arbitrary group number for now"
)
return
[
out
]
@reg.register_schedule
(
"nn.conv2d"
)
def
schedule_conv2d
(
attrs
,
outs
,
target
):
"""Schedule definition of conv2d"""
groups
=
attrs
.
groups
layout
=
attrs
.
data_layout
kernel_layout
=
attrs
.
weight_layout
with
target
:
if
groups
==
1
and
layout
==
"NCHW"
:
return
topi
.
generic
.
schedule_conv2d_nchw
(
outs
)
elif
groups
==
1
and
layout
==
"NCHW4c"
:
return
topi
.
generic
.
schedule_conv2d_nchw
(
outs
)
elif
groups
==
1
and
layout
==
"NHWC"
:
return
topi
.
generic
.
schedule_conv2d_nhwc
(
outs
)
elif
groups
!=
1
:
if
layout
==
"NCHW"
:
# TODO(leyuan, merrymercy, Huyuwei): fold depthwise topi into conv2d.
return
topi
.
generic
.
schedule_depthwise_conv2d_nchw
(
outs
)
elif
layout
==
"NHWC"
and
kernel_layout
==
"HWOI"
:
return
topi
.
generic
.
schedule_depthwise_conv2d_nhwc
(
outs
)
raise
ValueError
(
"No compatible schedule"
)
reg
.
register_pattern
(
"nn.conv2d"
,
OpPattern
.
OUT_ELEMWISE_FUSABLE
)
# conv2d_transpose
@reg.register_compute
(
"nn.conv2d_transpose"
)
def
compute_conv2d_transpose
(
attrs
,
inputs
,
out_dtype
,
target
):
"""Compute definition of conv2d_transpose"""
padding
=
get_const_tuple
(
attrs
.
padding
)
strides
=
get_const_tuple
(
attrs
.
strides
)
dilation
=
get_const_tuple
(
attrs
.
dilation
)
groups
=
attrs
.
groups
layout
=
attrs
.
data_layout
out_dtype
=
attrs
.
out_dtype
out_dtype
=
(
inputs
[
0
]
.
dtype
if
(
out_dtype
==
"same"
or
out_dtype
==
""
)
else
out_dtype
)
assert
layout
==
"NCHW"
,
"only support nchw for now"
assert
dilation
==
(
1
,
1
),
"not support dilate now"
assert
groups
==
1
,
"only support groups == 1 for now"
out
=
topi
.
nn
.
conv2d_transpose_nchw
(
inputs
[
0
],
inputs
[
1
],
strides
,
padding
,
out_dtype
)
output_padding
=
get_const_tuple
(
attrs
.
output_padding
)
out
=
topi
.
nn
.
pad
(
out
,
[
0
,
0
,
0
,
0
],
[
0
,
0
,
output_padding
[
0
],
output_padding
[
1
]])
return
[
out
]
@reg.register_schedule
(
"nn.conv2d_transpose"
)
def
schedule_conv2d_transpose
(
attrs
,
outs
,
target
):
"""Schedule definition of conv2d_transpose"""
with
target
:
return
topi
.
generic
.
schedule_conv2d_transpose_nchw
(
outs
)
reg
.
register_pattern
(
"nn.conv2d_transpose"
,
OpPattern
.
OUT_ELEMWISE_FUSABLE
)
# bias_add
@reg.register_compute
(
"nn.bias_add"
)
def
compute_bias_add
(
attrs
,
inputs
,
out_dtype
,
target
):
"""Compute definition of conv2d_transpose"""
axis
=
attrs
.
axis
bias
=
inputs
[
1
]
data_ndim
=
len
(
inputs
[
0
]
.
shape
)
if
axis
<
0
:
axis
=
axis
+
data_ndim
num_newaxis
=
data_ndim
-
axis
-
1
if
num_newaxis
:
bias
=
topi
.
expand_dims
(
bias
,
axis
=
1
,
num_newaxis
=
num_newaxis
)
return
[
topi
.
add
(
inputs
[
0
],
bias
)]
reg
.
register_schedule
(
"nn.bias_add"
,
schedule_injective
)
reg
.
register_pattern
(
"nn.bias_add"
,
OpPattern
.
BROADCAST
)
# max_pool2d
@reg.register_schedule
(
"nn.max_pool2d"
)
def
schedule_max_pool2d
(
attrs
,
outs
,
target
):
"""Schedule definition of max_pool2d"""
layout
=
attrs
.
layout
with
target
:
return
topi
.
generic
.
schedule_pool
(
outs
,
layout
)
reg
.
register_pattern
(
"nn.max_pool2d"
,
OpPattern
.
OUT_ELEMWISE_FUSABLE
)
# avg_pool2d
@reg.register_schedule
(
"nn.avg_pool2d"
)
def
schedule_avg_pool2d
(
attrs
,
outs
,
target
):
"""Schedule definition of avg_pool2d"""
layout
=
attrs
.
layout
with
target
:
return
topi
.
generic
.
schedule_pool
(
outs
,
layout
)
reg
.
register_pattern
(
"nn.avg_pool2d"
,
OpPattern
.
OUT_ELEMWISE_FUSABLE
)
# global_max_pool2d
@reg.register_schedule
(
"nn.global_max_pool2d"
)
def
schedule_global_max_pool2d
(
_
,
outs
,
target
):
"""Schedule definition of global_max_pool2d"""
with
target
:
return
topi
.
generic
.
schedule_global_pool
(
outs
)
reg
.
register_pattern
(
"nn.global_max_pool2d"
,
OpPattern
.
OUT_ELEMWISE_FUSABLE
)
# global_avg_pool2d
@reg.register_schedule
(
"nn.global_avg_pool2d"
)
def
schedule_global_avg_pool2d
(
_
,
outs
,
target
):
"""Schedule definition of global_avg_pool2d"""
with
target
:
return
topi
.
generic
.
schedule_global_pool
(
outs
)
reg
.
register_pattern
(
"nn.global_avg_pool2d"
,
OpPattern
.
OUT_ELEMWISE_FUSABLE
)
python/tvm/relay/op/op.py
View file @
9f441d81
#pylint: disable=unused-argument
"""The base node types for the Relay language."""
import
topi
from
..._ffi.function
import
_init_api
from
..base
import
register_relay_node
...
...
@@ -156,3 +159,9 @@ def _lower(name, schedule, inputs, outputs):
@register_func
(
"relay.op.compiler._build"
)
def
_build
(
lowered_funcs
):
return
build
(
lowered_funcs
,
target
=
"llvm"
)
def
schedule_injective
(
attrs
,
outputs
,
target
):
"""Generic schedule for binary broadcast."""
with
target
:
return
topi
.
generic
.
schedule_injective
(
outputs
)
src/relay/backend/compile_engine.cc
View file @
9f441d81
...
...
@@ -89,7 +89,7 @@ class ScheduleGetter :
CachedFunc
cfunc
(
cache_node
);
CHECK
(
master_op_
.
defined
());
Schedule
schedule
=
fschedule
[
master_op_
](
cache_node
->
outputs
,
target_
);
master_attrs_
,
cache_node
->
outputs
,
target_
);
return
std
::
make_pair
(
schedule
,
cfunc
);
}
...
...
@@ -145,6 +145,7 @@ class ScheduleGetter :
}
if
(
op_pattern
>=
master_op_patetrn_
)
{
master_op_
=
op
;
master_attrs_
=
call_node
->
attrs
;
master_op_patetrn_
=
op_pattern
;
}
if
(
outputs
.
size
()
!=
1
)
{
...
...
@@ -193,6 +194,7 @@ class ScheduleGetter :
private
:
tvm
::
Target
target_
;
Op
master_op_
;
Attrs
master_attrs_
;
int
master_op_patetrn_
{
0
};
std
::
ostringstream
readable_name_stream_
;
std
::
unordered_map
<
Expr
,
Array
<
Tensor
>
,
NodeHash
,
NodeEqual
>
memo_
;
...
...
@@ -285,6 +287,9 @@ class CompileEngineImpl : public CompileEngineNode {
* \return Updated name which is unique.
*/
std
::
string
GetUniqeName
(
std
::
string
name
)
{
for
(
size_t
i
=
0
;
i
<
name
.
length
();
++
i
)
{
if
(
name
[
i
]
==
'.'
)
name
[
i
]
=
'_'
;
}
while
(
true
)
{
auto
it
=
name_map_
.
find
(
name
);
if
(
it
==
name_map_
.
end
())
{
...
...
src/relay/op/nn/nn.cc
View file @
9f441d81
...
...
@@ -91,16 +91,15 @@ bool DenseRel(const Array<Type>& types,
Array
<
tvm
::
Expr
>
oshape
=
data
->
shape
;
if
(
param
->
units
.
defined
())
{
Array
<
tvm
::
Expr
>
dshape
=
data
->
shape
;
// validate the weight shape is proper if defined
// Assign weight type
Array
<
IndexExpr
>
wshape
({
dshape
[
dshape
.
size
()
-
1
],
param
->
units
});
Array
<
IndexExpr
>
wshape
({
param
->
units
,
dshape
[
dshape
.
size
()
-
1
]
});
reporter
->
Assign
(
types
[
1
],
TensorTypeNode
::
make
(
wshape
,
data
->
dtype
));
oshape
.
Set
((
oshape
.
size
()
-
1
),
param
->
units
);
}
else
{
if
(
weight
==
nullptr
)
return
false
;
Array
<
tvm
::
Expr
>
wshape
=
weight
->
shape
;
oshape
.
Set
((
oshape
.
size
()
-
1
),
wshape
[
wshape
.
size
()
-
1
]);
oshape
.
Set
((
oshape
.
size
()
-
1
),
wshape
[
0
]);
}
// assign output type
...
...
src/relay/op/nn/pooling.cc
View file @
9f441d81
...
...
@@ -4,7 +4,9 @@
* \brief Pooling operators
*/
#include <tvm/relay/op.h>
#include <tvm/relay/op_attr_types.h>
#include <tvm/relay/attrs/nn.h>
#include <topi/nn/pooling.h>
#include <vector>
#include "layout.h"
...
...
@@ -14,7 +16,7 @@ namespace relay {
TVM_REGISTER_NODE_TYPE
(
MaxPool2DAttrs
);
TVM_REGISTER_NODE_TYPE
(
AvgPool2DAttrs
);
template
<
typename
AttrT
t
ype
>
template
<
typename
AttrType
>
bool
Pool2DRel
(
const
Array
<
Type
>&
types
,
int
num_inputs
,
const
Attrs
&
attrs
,
...
...
@@ -27,7 +29,7 @@ bool Pool2DRel(const Array<Type>& types,
CHECK_NE
(
dshape
.
size
(),
0
);
CHECK_GE
(
dshape
.
size
(),
2U
)
<<
"Pool2D only support input >= 2-D: input must have height and width"
;
const
auto
param
=
attrs
.
as
<
AttrT
t
ype
>
();
const
auto
param
=
attrs
.
as
<
AttrType
>
();
CHECK
(
param
!=
nullptr
);
Layout
layout
(
param
->
layout
);
...
...
@@ -88,6 +90,46 @@ Expr MakeMaxPool2D(Expr data,
return
CallNode
::
make
(
op
,
{
data
},
Attrs
(
attrs
),
{});
}
template
<
typename
AttrType
,
topi
::
nn
::
PoolType
mode
>
Array
<
Tensor
>
Pool2DCompute
(
const
Attrs
&
attrs
,
const
Array
<
Tensor
>&
inputs
,
const
Type
&
out_type
,
const
Target
&
target
)
{
const
auto
*
param
=
attrs
.
as
<
AttrType
>
();
CHECK
(
param
!=
nullptr
);
auto
pool_size
=
param
->
pool_size
;
auto
strides
=
param
->
strides
;
auto
padding
=
param
->
padding
;
auto
ceil_mode
=
param
->
ceil_mode
;
Layout
layout
(
param
->
layout
);
CHECK
(
layout
.
convertible
(
Layout
(
"NCHW"
)))
<<
"max_pool2d currently only supports layouts that are convertible from NCHW"
;
CHECK_EQ
(
layout
.
indexof
(
'h'
),
-
1
)
<<
"max_pool2d does not support input split on height"
;
CHECK_EQ
(
layout
.
indexof
(
'w'
),
-
1
)
<<
"max_pool2d does not support input split on width"
;
CHECK
(
inputs
[
0
].
ndim
()
==
4U
||
inputs
[
0
].
ndim
()
==
5U
)
<<
"Pool2D only support 4-D input (e.g., NCHW)"
<<
" or 5-D input (last dimension is a split of channel)"
;
if
(
param
->
padding
.
size
()
==
1
)
{
padding
.
push_back
(
padding
[
0
]);
padding
.
push_back
(
padding
[
0
]);
padding
.
push_back
(
padding
[
0
]);
}
else
if
(
param
->
padding
.
size
()
==
2
)
{
padding
.
push_back
(
padding
[
0
]);
padding
.
push_back
(
padding
[
1
]);
}
if
(
mode
==
topi
::
nn
::
kAvgPool
)
{
bool
count_include_pad
=
reinterpret_cast
<
const
AvgPool2DAttrs
*>
(
param
)
->
count_include_pad
;
return
Array
<
Tensor
>
{
topi
::
nn
::
pool
(
inputs
[
0
],
pool_size
,
strides
,
padding
,
mode
,
ceil_mode
,
layout
.
name
(),
count_include_pad
)};
}
else
{
return
Array
<
Tensor
>
{
topi
::
nn
::
pool
(
inputs
[
0
],
pool_size
,
strides
,
padding
,
mode
,
ceil_mode
,
layout
.
name
())};
}
}
TVM_REGISTER_API
(
"relay.op.nn._make.max_pool2d"
)
.
set_body
([](
const
TVMArgs
&
args
,
TVMRetValue
*
rv
)
{
...
...
@@ -120,7 +162,8 @@ RELAY_REGISTER_OP("nn.max_pool2d")
.
set_num_inputs
(
1
)
.
add_argument
(
"data"
,
"Tensor"
,
"The input tensor."
)
.
set_support_level
(
2
)
.
add_type_rel
(
"MaxPool2D"
,
Pool2DRel
<
MaxPool2DAttrs
>
);
.
add_type_rel
(
"MaxPool2D"
,
Pool2DRel
<
MaxPool2DAttrs
>
)
.
set_attr
<
FTVMCompute
>
(
"FTVMCompute"
,
Pool2DCompute
<
MaxPool2DAttrs
,
topi
::
nn
::
kMaxPool
>
);
// AvgPool2D
...
...
@@ -175,7 +218,8 @@ Average pooling operation for one dimensional data.
.
set_num_inputs
(
1
)
.
add_argument
(
"data"
,
"Tensor"
,
"The input tensor."
)
.
set_support_level
(
2
)
.
add_type_rel
(
"AvgPool2D"
,
Pool2DRel
<
AvgPool2DAttrs
>
);
.
add_type_rel
(
"AvgPool2D"
,
Pool2DRel
<
AvgPool2DAttrs
>
)
.
set_attr
<
FTVMCompute
>
(
"FTVMCompute"
,
Pool2DCompute
<
AvgPool2DAttrs
,
topi
::
nn
::
kAvgPool
>
);
// Global Pool
TVM_REGISTER_NODE_TYPE
(
GlobalPool2DAttrs
);
...
...
@@ -211,6 +255,29 @@ bool GlobalPool2DRel(const Array<Type>& types,
return
true
;
}
template
<
topi
::
nn
::
PoolType
mode
>
Array
<
Tensor
>
GlobalPool2DCompute
(
const
Attrs
&
attrs
,
const
Array
<
Tensor
>&
inputs
,
const
Type
&
out_type
,
const
Target
&
target
)
{
const
auto
*
param
=
attrs
.
as
<
GlobalPool2DAttrs
>
();
CHECK
(
param
!=
nullptr
);
Layout
layout
(
param
->
layout
);
CHECK
(
layout
.
convertible
(
Layout
(
"NCHW"
)))
<<
"global_avg_pool2d currently only supports layouts that are convertible from NCHW"
;
CHECK_EQ
(
layout
.
indexof
(
'h'
),
-
1
)
<<
"global_avg_pool2d does not support input split on height"
;
CHECK_EQ
(
layout
.
indexof
(
'w'
),
-
1
)
<<
"global_avg_pool2d does not support input split on width"
;
CHECK
(
inputs
[
0
].
ndim
()
==
4U
||
inputs
[
0
].
ndim
()
==
5U
)
<<
"Pool2D only support 4-D input (e.g., NCHW)"
<<
" or 5-D input (last dimension is a split of channel)"
;
return
Array
<
Tensor
>
{
topi
::
nn
::
global_pool
(
inputs
[
0
],
mode
,
layout
.
name
())
};
}
Expr
MakeGlobalAvgPool2D
(
Expr
data
,
std
::
string
layout
)
{
auto
attrs
=
make_node
<
GlobalPool2DAttrs
>
();
...
...
@@ -239,7 +306,8 @@ RELAY_REGISTER_OP("nn.global_avg_pool2d")
.
set_num_inputs
(
1
)
.
add_argument
(
"data"
,
"Tensor"
,
"The input tensor."
)
.
set_support_level
(
2
)
.
add_type_rel
(
"GlobalAvgPool2D"
,
GlobalPool2DRel
);
.
add_type_rel
(
"GlobalAvgPool2D"
,
GlobalPool2DRel
)
.
set_attr
<
FTVMCompute
>
(
"FTVMCompute"
,
GlobalPool2DCompute
<
topi
::
nn
::
kAvgPool
>
);
// GlobalMaxPool
Expr
MakeGlobalMaxPool2D
(
Expr
data
,
...
...
@@ -269,7 +337,8 @@ RELAY_REGISTER_OP("nn.global_max_pool2d")
.
set_num_inputs
(
1
)
.
add_argument
(
"data"
,
"Tensor"
,
"The input tensor."
)
.
set_support_level
(
2
)
.
add_type_rel
(
"GlobalMaxPool2D"
,
GlobalPool2DRel
);
.
add_type_rel
(
"GlobalMaxPool2D"
,
GlobalPool2DRel
)
.
set_attr
<
FTVMCompute
>
(
"FTVMCompute"
,
GlobalPool2DCompute
<
topi
::
nn
::
kMaxPool
>
);
}
// namespace relay
}
// namespace tvm
tests/python/relay/test_backend_interpreter.py
View file @
9f441d81
...
...
@@ -55,28 +55,6 @@ def test_mul_param():
check_eval
(
func
,
[
x_data
,
y_data
],
x_data
*
y_data
)
# failing due to numeric issues
# def test_dense():
# x = relay.var('x', shape=(10, 10))
# w = relay.var('w', shape=(10, 10))
# y = relay.nn.dense(x, w)
# func = relay.Function([x, w], y)
# x_data = np.random.rand(10, 10).astype('float32')
# w_data = np.random.rand(10, 10).astype('float32')
# check_eval(func, [x_data, w_data], x_data @ w_data, rtol=0.1)
# def test_linear():
# x = relay.var('x', shape=(10, 10))
# w = relay.var('w', shape=(10, 10))
# b = relay.var('b', shape=(10,))
# y = relay.add(relay.nn.dense(x, w), b)
# func = relay.Function([x, w, b], y)
# x_data = np.random.rand(10, 10).astype('float32')
# w_data = np.random.rand(10, 10).astype('float32')
# b_data = np.random.rand(10).astype('float32')
# check_eval(func, [x_data, w_data, b_data], x_data @ w_data + b_data)
def
test_equal
():
i
=
relay
.
var
(
'i'
,
shape
=
[],
dtype
=
'int32'
)
j
=
relay
.
var
(
'i'
,
shape
=
[],
dtype
=
'int32'
)
...
...
tests/python/relay/test_op_level1.py
View file @
9f441d81
...
...
@@ -74,6 +74,7 @@ def test_binary_op():
y_data
=
np
.
random
.
rand
(
5
,
10
,
5
)
.
astype
(
t2
.
dtype
)
ref_res
=
ref
(
x_data
,
y_data
)
func
=
relay
.
Function
([
x
,
y
],
z
)
for
target
,
ctx
in
ctx_list
():
# use graph by execuor default for testing, as we need
# create function explicitly to avoid constant-folding.
...
...
@@ -89,12 +90,24 @@ def test_binary_op():
def
test_bias_add
():
x
=
relay
.
var
(
"x"
,
shape
=
(
10
,
2
,
3
,
4
))
xshape
=
(
10
,
2
,
3
,
4
)
bshape
=
(
2
,)
dtype
=
"float32"
x
=
relay
.
var
(
"x"
,
shape
=
xshape
)
bias
=
relay
.
var
(
"bias"
)
z
=
relay
.
nn
.
bias_add
(
x
,
bias
)
zz
=
relay
.
ir_pass
.
infer_type
(
z
)
assert
"axis="
not
in
zz
.
astext
()
assert
zz
.
args
[
1
]
.
checked_type
==
relay
.
TensorType
((
2
,))
assert
zz
.
args
[
1
]
.
checked_type
==
relay
.
TensorType
(
bshape
)
func
=
relay
.
Function
([
x
,
bias
],
z
)
x_data
=
np
.
random
.
uniform
(
size
=
xshape
)
.
astype
(
dtype
)
y_data
=
np
.
random
.
uniform
(
size
=
bshape
)
.
astype
(
dtype
)
ref_res
=
x_data
+
y_data
.
reshape
((
2
,
1
,
1
))
for
target
,
ctx
in
ctx_list
():
intrp
=
relay
.
create_executor
(
"graph"
,
ctx
=
ctx
,
target
=
target
)
op_res
=
intrp
.
evaluate
(
func
)(
x_data
,
y_data
)
np
.
testing
.
assert_allclose
(
op_res
.
asnumpy
(),
ref_res
,
rtol
=
1e-5
)
def
test_expand_dims_infer_type
():
...
...
@@ -217,6 +230,50 @@ def test_batch_norm():
]))
def
test_dense
():
n
,
c
,
h
,
w
=
tvm
.
var
(
"n"
),
tvm
.
var
(
"c"
),
tvm
.
var
(
"h"
),
tvm
.
var
(
"w"
)
x
=
relay
.
var
(
"x"
,
relay
.
TensorType
((
n
,
c
,
h
,
w
),
"float32"
))
w
=
relay
.
var
(
"w"
,
relay
.
TensorType
((
2
,
w
),
"float32"
))
y
=
relay
.
nn
.
dense
(
x
,
w
,
units
=
2
)
"units=2"
in
y
.
astext
()
yy
=
relay
.
ir_pass
.
infer_type
(
y
)
assert
yy
.
checked_type
==
relay
.
TensorType
((
n
,
c
,
h
,
2
),
"float32"
)
n
,
c
,
h
,
w
=
tvm
.
var
(
"n"
),
tvm
.
var
(
"c"
),
tvm
.
var
(
"h"
),
2
x
=
relay
.
var
(
"x"
,
relay
.
TensorType
((
n
,
c
,
h
,
w
),
"float32"
))
wh
,
ww
=
tvm
.
var
(
"wh"
),
tvm
.
var
(
"ww"
)
w
=
relay
.
var
(
"w"
,
relay
.
TensorType
((
ww
,
wh
),
"float32"
))
y
=
relay
.
nn
.
dense
(
x
,
w
)
yy
=
relay
.
ir_pass
.
infer_type
(
y
)
assert
yy
.
checked_type
==
relay
.
TensorType
((
n
,
c
,
h
,
ww
),
"float32"
)
n
,
c
,
h
,
w
=
tvm
.
var
(
"n"
),
tvm
.
var
(
"c"
),
tvm
.
var
(
"h"
),
2
x
=
relay
.
var
(
"x"
,
relay
.
TensorType
((
n
,
c
,
h
,
w
),
"float32"
))
w
=
relay
.
var
(
"w"
,
relay
.
IncompleteType
())
y
=
relay
.
nn
.
dense
(
x
,
w
,
units
=
2
)
yy
=
relay
.
ir_pass
.
infer_type
(
y
)
assert
yy
.
checked_type
==
relay
.
TensorType
((
n
,
c
,
h
,
2
),
"float32"
)
x
=
relay
.
var
(
"x"
,
shape
=
(
10
,
5
))
w
=
relay
.
var
(
"w"
,
shape
=
(
2
,
5
))
z
=
relay
.
nn
.
dense
(
x
,
w
)
# Check result.
func
=
relay
.
Function
([
x
,
w
],
z
)
x_data
=
np
.
random
.
rand
(
10
,
5
)
.
astype
(
'float32'
)
w_data
=
np
.
random
.
rand
(
2
,
5
)
.
astype
(
'float32'
)
ref_res
=
np
.
dot
(
x_data
,
w_data
.
T
)
for
target
,
ctx
in
ctx_list
():
intrp1
=
relay
.
create_executor
(
"graph"
,
ctx
=
ctx
,
target
=
target
)
intrp2
=
relay
.
create_executor
(
"debug"
,
ctx
=
ctx
,
target
=
target
)
op_res1
=
intrp1
.
evaluate
(
func
)(
x_data
,
w_data
)
tvm
.
testing
.
assert_allclose
(
op_res1
.
asnumpy
(),
ref_res
,
rtol
=
1e-5
)
op_res2
=
intrp2
.
evaluate
(
func
)(
x_data
,
w_data
)
tvm
.
testing
.
assert_allclose
(
op_res2
.
asnumpy
(),
ref_res
,
rtol
=
1e-5
)
if
__name__
==
"__main__"
:
test_bias_add
()
test_unary_op
()
...
...
@@ -227,3 +284,4 @@ if __name__ == "__main__":
test_log_softmax
()
test_dropout
()
test_batch_norm
()
test_dense
()
tests/python/relay/test_op_level2.py
View file @
9f441d81
...
...
@@ -2,7 +2,9 @@
"""
import
tvm
from
tvm
import
relay
from
tvm.relay.testing
import
ctx_list
import
numpy
as
np
import
topi.testing
def
test_conv2d_infer_type
():
# symbolic in batch dimension
...
...
@@ -62,6 +64,62 @@ def test_conv2d_infer_type():
(
n
,
h
,
w
,
16
),
"int32"
)
def
test_conv2d_run
():
def
run_test_conv2d
(
dtype
,
out_dtype
,
scale
,
dshape
,
kshape
,
padding
=
(
1
,
1
),
fref
=
None
,
groups
=
1
,
dilation
=
(
1
,
1
),
**
attrs
):
x
=
relay
.
var
(
"x"
,
shape
=
dshape
)
w
=
relay
.
var
(
"w"
)
y
=
relay
.
nn
.
conv2d
(
x
,
w
,
padding
=
padding
,
dilation
=
dilation
,
groups
=
groups
,
**
attrs
)
func
=
relay
.
Function
([
x
,
w
],
y
)
data
=
np
.
random
.
uniform
(
-
scale
,
scale
,
size
=
dshape
)
.
astype
(
dtype
)
kernel
=
np
.
random
.
uniform
(
-
scale
,
scale
,
size
=
kshape
)
.
astype
(
dtype
)
dkernel
=
topi
.
testing
.
dilate_python
(
kernel
,
(
1
,
1
)
+
dilation
)
if
fref
is
None
:
ref_res
=
topi
.
testing
.
conv2d_nchw_python
(
data
.
astype
(
out_dtype
),
dkernel
.
astype
(
out_dtype
),
1
,
padding
)
else
:
ref_res
=
fref
(
data
.
astype
(
out_dtype
),
dkernel
.
astype
(
out_dtype
))
for
target
,
ctx
in
ctx_list
():
intrp1
=
relay
.
create_executor
(
"graph"
,
ctx
=
ctx
,
target
=
target
)
op_res1
=
intrp1
.
evaluate
(
func
)(
data
,
kernel
)
tvm
.
testing
.
assert_allclose
(
op_res1
.
asnumpy
(),
ref_res
,
rtol
=
1e-5
,
atol
=
1e-5
)
# depthwise conv2d
dshape
=
(
1
,
32
,
18
,
18
)
kshape
=
(
32
,
1
,
3
,
3
)
run_test_conv2d
(
"float32"
,
"float32"
,
1
,
dshape
,
kshape
,
padding
=
(
1
,
1
),
channels
=
32
,
groups
=
32
,
kernel_size
=
(
3
,
3
),
fref
=
lambda
x
,
w
:
topi
.
testing
.
depthwise_conv2d_python_nchw
(
x
,
w
,
(
1
,
1
),
"SAME"
))
# normal conv2d
dshape
=
(
1
,
3
,
224
,
224
)
kshape
=
(
10
,
3
,
3
,
3
)
run_test_conv2d
(
"float32"
,
"float32"
,
1
,
dshape
,
kshape
,
padding
=
(
1
,
1
),
channels
=
10
,
kernel_size
=
(
3
,
3
))
# mixed precision
run_test_conv2d
(
"int8"
,
"int32"
,
1
,
dshape
,
kshape
,
padding
=
(
1
,
1
),
channels
=
10
,
kernel_size
=
(
3
,
3
))
kshape
=
(
10
,
3
,
1
,
3
)
# mixed precision.
run_test_conv2d
(
"int8"
,
"int32"
,
1
,
dshape
,
kshape
,
padding
=
(
0
,
1
),
channels
=
10
,
kernel_size
=
(
1
,
3
))
# dilated conv2d
dshape
=
(
1
,
3
,
18
,
18
)
kshape
=
(
10
,
3
,
3
,
3
)
run_test_conv2d
(
"float32"
,
"float32"
,
1
,
dshape
,
kshape
,
padding
=
(
1
,
1
),
channels
=
10
,
kernel_size
=
(
3
,
3
),
dilation
=
(
3
,
3
))
def
test_conv2d_transpose_infer_type
():
# symbolic in batch dimension
n
,
c
,
h
,
w
=
tvm
.
var
(
"n"
),
10
,
10
,
12
...
...
@@ -90,6 +148,33 @@ def test_conv2d_transpose_infer_type():
assert
yy
.
checked_type
==
relay
.
TensorType
(
(
n
,
15
,
15
,
11
),
"float32"
)
def
test_conv2d_transpose_run
():
dshape
=
(
1
,
3
,
18
,
18
)
kshape
=
(
3
,
10
,
3
,
3
)
oshape
=
(
1
,
10
,
37
,
37
)
x
=
relay
.
var
(
"x"
,
shape
=
dshape
)
w
=
relay
.
var
(
"w"
)
y
=
relay
.
nn
.
conv2d_transpose
(
x
,
w
,
channels
=
10
,
kernel_size
=
(
3
,
3
),
strides
=
(
2
,
2
),
padding
=
(
1
,
1
),
output_padding
=
(
2
,
2
))
func
=
relay
.
Function
([
x
,
w
],
y
)
dtype
=
"float32"
data
=
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
)
kernel
=
np
.
random
.
uniform
(
size
=
kshape
)
.
astype
(
dtype
)
c_np
=
topi
.
testing
.
conv2d_transpose_nchw_python
(
data
,
kernel
,
2
,
1
)
d_np
=
np
.
zeros
(
shape
=
oshape
)
d_np
[:,:,
0
:
c_np
.
shape
[
2
],
0
:
c_np
.
shape
[
3
]]
=
c_np
ref_res
=
d_np
for
target
,
ctx
in
ctx_list
():
intrp1
=
relay
.
create_executor
(
"graph"
,
ctx
=
ctx
,
target
=
target
)
op_res1
=
intrp1
.
evaluate
(
func
)(
data
,
kernel
)
tvm
.
testing
.
assert_allclose
(
op_res1
.
asnumpy
(),
ref_res
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_upsampling_infer_type
():
n
,
c
,
h
,
w
=
tvm
.
var
(
"n"
),
tvm
.
var
(
"c"
),
tvm
.
var
(
"h"
),
tvm
.
var
(
"w"
)
x
=
relay
.
var
(
"x"
,
relay
.
TensorType
((
n
,
c
,
h
,
w
),
"float32"
))
...
...
@@ -103,15 +188,29 @@ def test_upsampling_infer_type():
yy
=
relay
.
ir_pass
.
infer_type
(
y
)
assert
yy
.
checked_type
==
relay
.
TensorType
((
n
,
c
,
200
,
400
),
"float32"
)
def
_test_pool2d_infer_type
(
opfunc
):
def
_test_pool2d
(
opfunc
,
reffunc
):
n
,
c
,
h
,
w
=
tvm
.
var
(
"n"
),
10
,
224
,
224
x
=
relay
.
var
(
"x"
,
relay
.
TensorType
((
n
,
c
,
h
,
w
),
"float32"
))
y
=
opfunc
(
x
,
pool_size
=
(
1
,
1
))
assert
"pool_size="
in
y
.
astext
()
yy
=
relay
.
ir_pass
.
infer_type
(
y
)
assert
yy
.
checked_type
==
relay
.
TensorType
((
n
,
10
,
224
,
224
),
"float32"
)
# test execution
dtype
=
"float32"
dshape
=
(
1
,
3
,
28
,
28
)
x
=
relay
.
var
(
"x"
,
shape
=
dshape
)
y
=
opfunc
(
x
,
pool_size
=
(
2
,
2
),
strides
=
(
2
,
2
),
padding
=
(
0
,
0
))
func
=
relay
.
Function
([
x
],
y
)
data
=
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
)
ref_res
=
reffunc
(
data
.
reshape
(
1
,
3
,
14
,
2
,
14
,
2
),
axis
=
(
3
,
5
))
for
target
,
ctx
in
ctx_list
():
intrp1
=
relay
.
create_executor
(
"graph"
,
ctx
=
ctx
,
target
=
target
)
op_res1
=
intrp1
.
evaluate
(
func
)(
data
)
tvm
.
testing
.
assert_allclose
(
op_res1
.
asnumpy
(),
ref_res
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
_test_global_pool2d
_infer_type
(
op
func
):
def
_test_global_pool2d
(
opfunc
,
ref
func
):
n
,
c
,
h
,
w
=
tvm
.
var
(
"n"
),
tvm
.
var
(
"c"
),
224
,
224
x
=
relay
.
var
(
"x"
,
relay
.
TensorType
((
n
,
h
,
w
,
c
),
"float32"
))
y
=
opfunc
(
x
,
layout
=
"NHWC"
)
...
...
@@ -123,12 +222,61 @@ def _test_global_pool2d_infer_type(opfunc):
y
=
opfunc
(
x
)
yy
=
relay
.
ir_pass
.
infer_type
(
y
)
assert
yy
.
checked_type
==
relay
.
TensorType
((
n
,
c
,
1
,
1
),
"float32"
)
# test execution
dtype
=
"float32"
dshape
=
(
1
,
1024
,
7
,
7
)
x
=
relay
.
var
(
"x"
,
shape
=
dshape
)
y
=
opfunc
(
x
)
func
=
relay
.
Function
([
x
],
y
)
data
=
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
)
ref_res
=
reffunc
(
data
,
axis
=
(
2
,
3
),
keepdims
=
True
)
for
target
,
ctx
in
ctx_list
():
intrp1
=
relay
.
create_executor
(
"graph"
,
ctx
=
ctx
,
target
=
target
)
op_res1
=
intrp1
.
evaluate
(
func
)(
data
)
tvm
.
testing
.
assert_allclose
(
op_res1
.
asnumpy
(),
ref_res
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_pool2d
():
_test_pool2d
(
relay
.
nn
.
max_pool2d
,
np
.
max
)
_test_pool2d
(
relay
.
nn
.
avg_pool2d
,
np
.
mean
)
_test_global_pool2d
(
relay
.
nn
.
global_max_pool2d
,
np
.
max
)
_test_global_pool2d
(
relay
.
nn
.
global_avg_pool2d
,
np
.
mean
)
def
test_avg_pool2d_no_count_pad
():
kh
,
kw
=
(
4
,
4
)
sh
,
sw
=
(
2
,
2
)
ph
,
pw
=
(
2
,
2
)
n
=
1
(
ic
,
ih
,
iw
)
=
(
3
,
28
,
28
)
(
oc
,
oh
,
ow
)
=
(
3
,
15
,
15
)
dshape
=
(
n
,
ic
,
ih
,
iw
)
x
=
relay
.
var
(
"x"
,
shape
=
dshape
)
y
=
relay
.
nn
.
avg_pool2d
(
x
,
pool_size
=
(
kh
,
kw
),
strides
=
(
sw
,
sw
),
padding
=
(
ph
,
pw
),
count_include_pad
=
False
)
func
=
relay
.
Function
([
x
],
y
)
dtype
=
"float32"
a_np
=
np
.
random
.
uniform
(
low
=
0.001
,
size
=
(
n
,
ic
,
ih
,
iw
))
.
astype
(
dtype
)
pad_np
=
np
.
zeros
(
shape
=
(
n
,
ic
,
ih
+
2
*
ph
,
iw
+
2
*
pw
))
.
astype
(
dtype
)
no_zero
=
(
range
(
n
),
range
(
ic
),
(
range
(
ph
,
ih
+
ph
)),
(
range
(
pw
,
iw
+
pw
)))
pad_np
[
np
.
ix_
(
*
no_zero
)]
=
a_np
b_np
=
np
.
zeros
(
shape
=
(
n
,
oc
,
oh
,
ow
))
.
astype
(
dtype
)
for
i
in
range
(
oh
):
for
j
in
range
(
ow
):
pad_count
=
np
.
sum
(
pad_np
[:,
:,
i
*
sh
:
i
*
sh
+
kh
,
j
*
sw
:
j
*
sw
+
kw
]
>
0
,
axis
=
(
2
,
3
))
b_np
[:,:,
i
,
j
]
=
np
.
sum
(
pad_np
[:,
:,
i
*
sh
:
i
*
sh
+
kh
,
j
*
sw
:
j
*
sw
+
kw
],
axis
=
(
2
,
3
))
/
np
.
maximum
(
pad_count
,
1
)
ref_res
=
np
.
maximum
(
b_np
,
0.0
)
data
=
a_np
for
target
,
ctx
in
ctx_list
():
intrp1
=
relay
.
create_executor
(
"graph"
,
ctx
=
ctx
,
target
=
target
)
op_res1
=
intrp1
.
evaluate
(
func
)(
data
)
tvm
.
testing
.
assert_allclose
(
op_res1
.
asnumpy
(),
ref_res
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_pool2d_infer_type
():
_test_pool2d_infer_type
(
relay
.
nn
.
max_pool2d
)
_test_pool2d_infer_type
(
relay
.
nn
.
avg_pool2d
)
_test_global_pool2d_infer_type
(
relay
.
nn
.
global_avg_pool2d
)
_test_global_pool2d_infer_type
(
relay
.
nn
.
global_avg_pool2d
)
def
test_flatten_infer_type
():
d1
,
d2
,
d3
,
d4
=
tvm
.
var
(
"d1"
),
tvm
.
var
(
"d2"
),
tvm
.
var
(
"d3"
),
tvm
.
var
(
"d4"
)
...
...
@@ -163,30 +311,6 @@ def test_pad_infer_type():
yy
=
relay
.
ir_pass
.
infer_type
(
y
)
assert
yy
.
checked_type
==
relay
.
TensorType
((
n
+
2
,
6
,
9
,
w
+
8
),
"float32"
)
def
test_dense_infer_type
():
n
,
c
,
h
,
w
=
tvm
.
var
(
"n"
),
tvm
.
var
(
"c"
),
tvm
.
var
(
"h"
),
tvm
.
var
(
"w"
)
x
=
relay
.
var
(
"x"
,
relay
.
TensorType
((
n
,
c
,
h
,
w
),
"float32"
))
w
=
relay
.
var
(
"w"
,
relay
.
TensorType
((
w
,
2
),
"float32"
))
y
=
relay
.
nn
.
dense
(
x
,
w
,
units
=
2
)
"units=2"
in
y
.
astext
()
yy
=
relay
.
ir_pass
.
infer_type
(
y
)
assert
yy
.
checked_type
==
relay
.
TensorType
((
n
,
c
,
h
,
2
),
"float32"
)
n
,
c
,
h
,
w
=
tvm
.
var
(
"n"
),
tvm
.
var
(
"c"
),
tvm
.
var
(
"h"
),
2
x
=
relay
.
var
(
"x"
,
relay
.
TensorType
((
n
,
c
,
h
,
w
),
"float32"
))
wh
,
ww
=
tvm
.
var
(
"wh"
),
tvm
.
var
(
"ww"
)
w
=
relay
.
var
(
"w"
,
relay
.
TensorType
((
wh
,
ww
),
"float32"
))
y
=
relay
.
nn
.
dense
(
x
,
w
)
yy
=
relay
.
ir_pass
.
infer_type
(
y
)
assert
yy
.
checked_type
==
relay
.
TensorType
((
n
,
c
,
h
,
ww
),
"float32"
)
n
,
c
,
h
,
w
=
tvm
.
var
(
"n"
),
tvm
.
var
(
"c"
),
tvm
.
var
(
"h"
),
2
x
=
relay
.
var
(
"x"
,
relay
.
TensorType
((
n
,
c
,
h
,
w
),
"float32"
))
w
=
relay
.
var
(
"w"
,
relay
.
IncompleteType
())
y
=
relay
.
nn
.
dense
(
x
,
w
,
units
=
2
)
yy
=
relay
.
ir_pass
.
infer_type
(
y
)
assert
yy
.
checked_type
==
relay
.
TensorType
((
n
,
c
,
h
,
2
),
"float32"
)
def
test_lrn
():
n
,
c
,
h
,
w
=
tvm
.
var
(
"n"
),
tvm
.
var
(
"c"
),
tvm
.
var
(
"h"
),
tvm
.
var
(
"w"
)
...
...
@@ -206,12 +330,14 @@ def test_l2_normalize():
if
__name__
==
"__main__"
:
test_pool2d
()
test_avg_pool2d_no_count_pad
()
test_lrn
()
test_l2_normalize
()
test_conv2d_infer_type
()
test_pool2d_infer_type
()
test_upsampling_infer_type
()
test_flatten_infer_type
()
test_pad_infer_type
()
test_conv2d_transpose_infer_type
()
test_dense_infer_type
()
test_conv2d_transpose_run
()
test_conv2d_run
()
topi/python/topi/util.py
View file @
9f441d81
# pylint: disable=invalid-name
"""Common topi utilities"""
from
__future__
import
absolute_import
as
_abs
import
tvm
from
numbers
import
Integral
import
tvm
from
.
import
tag
def
traverse_inline
(
s
,
final_op
,
callback
):
...
...
@@ -68,13 +69,13 @@ def get_const_int(expr):
out_value : int
The output.
"""
if
isinstance
(
expr
,
int
):
if
isinstance
(
expr
,
Integral
):
return
expr
if
not
isinstance
(
expr
,
(
tvm
.
expr
.
IntImm
,
tvm
.
expr
.
UIntImm
)):
expr
=
tvm
.
ir_pass
.
Simplify
(
expr
)
if
not
isinstance
(
expr
,
(
tvm
.
expr
.
IntImm
,
tvm
.
expr
.
UIntImm
)):
raise
ValueError
(
"Expect value to be constant int"
)
return
expr
.
value
return
int
(
expr
.
value
)
def
equal_const_int
(
expr
,
value
):
...
...
@@ -90,7 +91,7 @@ def equal_const_int(expr, value):
equal : bool
Whether they equals.
"""
if
isinstance
(
expr
,
int
):
if
isinstance
(
expr
,
Integral
):
return
expr
==
value
if
not
isinstance
(
expr
,
(
tvm
.
expr
.
IntImm
,
tvm
.
expr
.
UIntImm
)):
expr
=
tvm
.
ir_pass
.
Simplify
(
expr
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment