Commit 9ebb57b3 by Tianqi Chen Committed by GitHub

[VERILOG] VPI Mem Interface/ VPI MMap (#73)

* [VERILOG] VPI Mem Interface/ VPI MMap

* fix test issues
parent 3957926e
......@@ -6,6 +6,8 @@ os:
- linux
- osx
osx_image: xcode8
env:
# code analysis
- TASK=all_test
......
Subproject commit c2871f5db50830f5278ff6e323e8e51a6d5516dd
Subproject commit 2b75a0ce6f191ad0fcb5319039b41e990968542a
......@@ -38,6 +38,13 @@
TVM_EXTERN_C {
/*! \brief type of array index. */
typedef int64_t tvm_index_t;
/*! \brief Extension device types in TVM */
typedef enum {
/*! \brief Simulated on board RAM */
kVPI = 9
} TVMDeviceExtType;
/*!
* \brief The type code in TVMType
* \note TVMType is used in two places.
......
......@@ -274,6 +274,7 @@ class TVMArgValue : public TVMPODValue_ {
return value_.v_type;
}
operator PackedFunc() const {
if (type_code_ == kNull) return PackedFunc();
TVM_CHECK_TYPE_CODE(type_code_, kFuncHandle);
return *ptr<PackedFunc>();
}
......@@ -350,6 +351,7 @@ class TVMRetValue : public TVMPODValue_ {
return value_.v_type;
}
operator PackedFunc() const {
if (type_code_ == kNull) return PackedFunc();
TVM_CHECK_TYPE_CODE(type_code_, kFuncHandle);
return *ptr<PackedFunc>();
}
......
......@@ -15,7 +15,7 @@ from . import schedule
from . import module
from . import ndarray as nd
from .ndarray import cpu, gpu, opencl, cl
from .ndarray import cpu, gpu, opencl, cl, vpi
from ._base import TVMError
from .api import *
......
......@@ -18,7 +18,8 @@ class TVMContext(ctypes.Structure):
MASK2STR = {
1 : 'cpu',
2 : 'gpu',
4 : 'opencl'
4 : 'opencl',
9 : 'vpi'
}
def __init__(self, device_id, device_type):
super(TVMContext, self).__init__()
......@@ -76,6 +77,16 @@ def opencl(dev_id=0):
"""
return TVMContext(dev_id, 4)
def vpi(dev_id=0):
"""Construct a VPI simulated device
Parameters
----------
dev_id : int, optional
The integer device id
"""
return TVMContext(dev_id, 9)
def numpyasarray(np_data):
"""Return a TVMArray representation of a numpy array.
......
......@@ -17,6 +17,7 @@ class VPISession(NodeBase):
super(VPISession, self).__init__(handle)
self.proc = None
self.execpath = None
self.yield_callbacks = []
def __del__(self):
self.proc.kill()
......@@ -47,6 +48,8 @@ class VPISession(NodeBase):
def yield_until_posedge(self):
"""Yield until next posedge"""
for f in self.yield_callbacks:
f()
return _api_internal._vpi_SessYield(self)
def shutdown(self):
......@@ -222,7 +225,16 @@ def session(file_name):
env['TVM_HREAD_PIPE'] = str(read_host)
env['TVM_HWRITE_PIPE'] = str(write_host)
proc = subprocess.Popen(cmd, env=env, close_fds=False)
try:
# close_fds does not work well for all python3
# Use pass_fds instead.
# pylint: disable=unexpected-keyword-arg
pass_fds = (read_device, write_device, read_host, write_host)
proc = subprocess.Popen(cmd, pass_fds=pass_fds, env=env)
except TypeError:
# This is effective for python2
proc = subprocess.Popen(cmd, close_fds=False, env=env)
# close device side pipe
os.close(read_device)
os.close(write_device)
......
......@@ -7,7 +7,7 @@ from __future__ import absolute_import as _abs
import numpy as _np
from ._ctypes._ndarray import TVMContext, TVMType, NDArrayBase
from ._ctypes._ndarray import cpu, gpu, opencl, empty, sync
from ._ctypes._ndarray import cpu, gpu, opencl, vpi, empty, sync
from ._ctypes._ndarray import _init_ndarray_module
from ._ctypes._function import Function
......
/*!
* Copyright (c) 2017 by Contributors
* \file vpi_device.cc
* \brief Simulated VPI RAM device.
*/
#include <tvm/runtime/registry.h>
#include <tvm/packed_func_ext.h>
#include <cstdlib>
#include <unordered_map>
#include <map>
#include <queue>
#include "../../runtime/device_api.h"
#include "./vpi_session.h"
namespace tvm {
namespace codegen {
/*! \brief Simulated device ram */
class VPIDeviceAPI : public runtime::DeviceAPI {
public:
VPIDeviceAPI() {
static const size_t kAllocAlign = 32U;
const char* s_ram_size = getenv("TVM_VPI_RAM_SIZE_MB");
// 16 MB ram.
int ram_size = 32;
if (s_ram_size != nullptr) {
ram_size = atoi(s_ram_size);
}
ram_.resize(ram_size << 17);
ram_head_ = kAllocAlign;
ram_max_ = ram_.size() * sizeof(int64_t);
LOG(INFO) << "Initialize VPI simulated ram " << ram_size << "MB ...";
}
// convert address to real address
void* RealAddr(const void* addr, size_t size) const {
int64_t ptr = reinterpret_cast<int64_t>(addr);
CHECK_LE(ptr + size, ram_max_)
<< "VPI: Illegal memory access";
return (char*)(&ram_[0]) + ptr; // NOLINT(*)
}
// convert address to real address
void* RealAddrSafe(const void* addr, size_t size) const {
int64_t ptr = reinterpret_cast<int64_t>(addr);
if (ptr + size >= ram_max_) return nullptr;
return (char*)(&ram_[0]) + ptr; // NOLINT(*)
}
void* AllocDataSpace(TVMContext ctx, size_t size, size_t alignment) final {
static const size_t kAllocAlign = 32U;
// always align to 32 bytes at least.
CHECK_LE(alignment, kAllocAlign);
alignment = kAllocAlign;
// always allocate block with aligned size.
size += alignment - (size % alignment);
// This is not thread safe, but fine for simulation.
auto it = free_blocks_.lower_bound(size);
if (it != free_blocks_.end()) {
size_t head = it->second;
free_blocks_.erase(it);
Block& b = block_map_.at(head);
CHECK(b.is_free);
b.is_free = false;
return reinterpret_cast<void*>(head);
} else {
CHECK_EQ(ram_head_ % kAllocAlign, 0U);
Block b;
b.size = size;
b.is_free = false;
CHECK_LE(ram_head_ + size, ram_max_)
<< "VPI: Out of memory";
block_map_[ram_head_] = b;
void* ret = reinterpret_cast<void*>(ram_head_);
ram_head_ += size;
return ret;
}
}
void FreeDataSpace(TVMContext ctx, void* ptr) final {
size_t head = reinterpret_cast<size_t>(ptr);
Block& b = block_map_.at(head);
b.is_free = true;
free_blocks_.insert({b.size, head});
}
void CopyDataFromTo(const void* from,
void* to,
size_t size,
TVMContext ctx_from,
TVMContext ctx_to,
TVMStreamHandle stream) final {
if (static_cast<int>(ctx_from.device_type) == kVPI) {
from = RealAddr(from, size);
}
if (static_cast<int>(ctx_to.device_type) == kVPI) {
to = RealAddr(to, size);
}
memcpy(to, from, size);
}
void StreamSync(TVMContext ctx, TVMStreamHandle stream) final {
}
static VPIDeviceAPI* Global() {
static VPIDeviceAPI inst;
return &inst;
}
private:
// allocator block for reuse
struct Block {
// The size of the block
size_t size;
// Whether this is already freed.
bool is_free{true};
};
// head -> blocks
std::unordered_map<size_t, Block> block_map_;
// size -> free heads.
std::multimap<size_t, size_t> free_blocks_;
// top of the ram
size_t ram_head_, ram_max_;
// The ram space.
std::vector<int64_t> ram_;
};
/* !\brief vector buffer to help read/write */
class VPIVecBuffer {
public:
// Put data into vec
void put_vec(const VPIHandle& h, size_t nwords,
const void* dptr, size_t size) {
wbuf_.resize(nwords);
vbuf_.resize(nwords);
memcpy(&wbuf_[0], dptr, size);
for (size_t i = 0; i < nwords; ++i) {
vbuf_[i].aval = wbuf_[i];
vbuf_[i].bval = 0;
}
h.put_vec(vbuf_);
}
// read data from vec.
void get_vec(const VPIHandle& h, void* dptr, size_t size) {
h.get_vec(&vbuf_);
wbuf_.resize(vbuf_.size());
for (size_t i = 0; i < vbuf_.size(); ++i) {
wbuf_[i] = vbuf_[i].aval;
CHECK_EQ(vbuf_[i].bval, 0)
<< "Write indetermined value to RAM";
}
memcpy(dptr, &wbuf_[0], size);
}
private:
// Temporal buffers.
std::vector<int32_t> wbuf_;
std::vector<vpi::VPIVecVal> vbuf_;
};
/*!
* \brief Memory interface for VPI memory.
*/
class VPIMemoryInterface {
public:
// Initialize the FSM.
void Init(VPIHandle module) {
device_ = VPIDeviceAPI::Global();
in_rst_ = module["rst"];
// read ports
in_read_dequeue_ = module["read_en"];
out_reg_read_data_ = module["reg_read_data"];
// Write ports
in_write_enqueue_ = module["write_en"];
in_write_data_ = module["write_data_in"];
// Status port
out_reg_read_valid_ = module["reg_read_valid"];
out_reg_write_ready_ = module["reg_write_ready"];
// memory control signal
ctrl_read_req_ = module["host_read_req"];
ctrl_read_addr_ = module["host_read_addr"];
ctrl_read_size_ = module["host_read_size"];
ctrl_write_req_ = module["host_write_req"];
ctrl_write_addr_ = module["host_write_addr"];
ctrl_write_size_ = module["host_write_size"];
// The bit and bytes;
size_t read_bits = out_reg_read_data_.size();
size_t write_bits = in_write_data_.size();
CHECK_EQ(read_bits % 8U, 0)
<< "Read/write unit have to be multiple of 8 bit(bytes)";
CHECK_EQ(write_bits % 8U, 0)
<< "Read/write unit have to be multiple of 8 bit(bytes)";
read_unit_bytes_ = read_bits / 8U;
write_unit_bytes_ = write_bits / 8U;
}
// Callback at post-edge.
void AtPosEedge() {
// reset
if (in_rst_.get_int()) {
CHECK_EQ(pending_read_.size, 0U);
CHECK_EQ(pending_write_.size, 0U);
CHECK(read_tasks_.empty());
CHECK(write_tasks_.empty());
out_reg_write_ready_.put_int(0);
out_reg_read_valid_.put_int(0);
return;
}
// read write tasks
if (in_read_dequeue_.get_int() || !out_reg_read_valid_.get_int()) {
ReadFromFIFO();
}
// update write full
if (in_write_enqueue_.get_int()) {
CHECK(out_reg_write_ready_.get_int());
WriteToFIFO();
}
if (pending_write_.size || write_tasks_.size()) {
out_reg_write_ready_.put_int(1);
} else {
out_reg_write_ready_.put_int(0);
}
// Control tasks
if (ctrl_read_req_.get_int()) {
FIFOTask tsk;
tsk.addr = reinterpret_cast<char*>(ctrl_read_addr_.get_int());
tsk.size = static_cast<size_t>(ctrl_read_size_.get_int());
read_tasks_.push(tsk);
}
// Control tasks
if (ctrl_write_req_.get_int()) {
FIFOTask tsk;
tsk.addr = reinterpret_cast<char*>(ctrl_write_addr_.get_int());
tsk.size = static_cast<size_t>(ctrl_write_size_.get_int());
write_tasks_.push(tsk);
}
}
private:
// The FIFO tasks
struct FIFOTask {
char* addr{nullptr};
size_t size{0};
};
// handle dequeue event
void ReadFromFIFO() {
if (pending_read_.size == 0) {
if (!read_tasks_.empty()) {
pending_read_ = read_tasks_.front();
read_tasks_.pop();
// translate to real memory addr
pending_read_.addr = static_cast<char*>(
device_->RealAddr(
pending_read_.addr, pending_read_.size));
}
}
if (pending_read_.size != 0) {
// The size to be read
size_t nread = std::min(pending_read_.size, read_unit_bytes_);
// Read from the data
size_t nwords = (read_unit_bytes_ + 3) / 4;
vbuf_.put_vec(out_reg_read_data_, nwords,
pending_read_.addr, nread);
// Update the pointer
pending_read_.size -= nread;
pending_read_.addr += nread;
// read into the vector
out_reg_read_valid_.put_int(1);
} else {
out_reg_read_valid_.put_int(0);
}
}
// handle write event
void WriteToFIFO() {
if (pending_write_.size == 0) {
if (!write_tasks_.empty()) {
pending_write_ = write_tasks_.front();
write_tasks_.pop();
// translate to real memory addr
pending_write_.addr = static_cast<char*>(
device_->RealAddr(
pending_write_.addr, pending_write_.size));
}
}
if (pending_write_.size != 0) {
// write to the ram.
size_t nwrite = std::min(pending_write_.size, write_unit_bytes_);
vbuf_.get_vec(in_write_data_, pending_write_.addr, nwrite);
// Update the pointer
pending_write_.size -= nwrite;
pending_write_.addr += nwrite;
}
}
// Device API
VPIDeviceAPI* device_{nullptr};
// Input clock and reset
VPIHandle in_rst_;
// Read FIFO signal
VPIHandle in_read_dequeue_;
// Write FIFO signal
VPIHandle in_write_enqueue_;
VPIHandle in_write_data_;
// Read memory controler signals
VPIHandle ctrl_read_req_;
VPIHandle ctrl_read_addr_;
VPIHandle ctrl_read_size_;
// Write memory controler signal signals
VPIHandle ctrl_write_req_;
VPIHandle ctrl_write_addr_;
VPIHandle ctrl_write_size_;
// Read FIFO outputs
VPIHandle out_reg_read_data_;
VPIHandle out_reg_read_valid_;
// Write FIFO outputs
VPIHandle out_reg_write_ready_;
// Size of current pending read.
FIFOTask pending_read_;
FIFOTask pending_write_;
// The read/write task queues.
std::queue<FIFOTask> read_tasks_;
std::queue<FIFOTask> write_tasks_;
// Unit bytes for read/writing
size_t read_unit_bytes_;
size_t write_unit_bytes_;
// Temporal buffers.
VPIVecBuffer vbuf_;
};
// Read only memory map.
class VPIMemMapBase {
public:
// Initialize the FSM.
void Init(VPIHandle module, const std::string& data_port) {
device_ = VPIDeviceAPI::Global();
// intiatialize the connections
rst_ = module["rst"];
addr_ = module["addr"];
data_ = module[data_port];
mmap_addr_ = module["mmap_addr"];
size_t unit_bits = data_.size();
CHECK_EQ(unit_bits % 8U, 0)
<< "Read/write unit have to be multiple of 8 bit(bytes)";
unit_bytes_ = unit_bits / 8U;
}
void* RealAddr() {
int byte_offset = addr_.get_int() * unit_bytes_;
void* ptr =
device_->RealAddrSafe(
reinterpret_cast<void*>(mmap_addr_.get_int() + byte_offset), 1);
return ptr;
}
protected:
// Device API
VPIDeviceAPI* device_{nullptr};
VPIHandle rst_;
VPIHandle addr_;
VPIHandle data_;
VPIHandle mmap_addr_;
size_t unit_bytes_;
VPIVecBuffer vbuf_;
};
class VPIReadMemMap : public VPIMemMapBase {
public:
void Init(VPIHandle module) {
VPIMemMapBase::Init(module, "reg_data");
}
void AtPosEedge() {
void* ptr = RealAddr();
if (ptr == nullptr) return;
size_t nwords = (unit_bytes_ + 3) / 4;
vbuf_.put_vec(data_, nwords, ptr, unit_bytes_);
}
};
// Write only memory map.
class VPIWriteMemMap : public VPIMemMapBase {
public:
void Init(VPIHandle module) {
VPIMemMapBase::Init(module, "data_in");
enable_ = module["en"];
}
void AtPosEedge() {
if (!enable_.get_int() || rst_.get_int()) return;
void* ptr = RealAddr();
CHECK(ptr != nullptr)
<< "Illegal write to VPI RAM";
vbuf_.get_vec(data_, ptr, unit_bytes_);
}
private:
VPIHandle enable_;
};
TVM_REGISTER_GLOBAL(_device_api_vpi)
.set_body([](runtime::TVMArgs args, runtime::TVMRetValue* rv) {
runtime::DeviceAPI* ptr = VPIDeviceAPI::Global();
*rv = static_cast<void*>(ptr);
});
template<typename T>
void TVMVPIHook(runtime::TVMArgs args, runtime::TVMRetValue* rv) {
VPIHandle m = args[0];
std::shared_ptr<T> p = std::make_shared<T>();
p->Init(m);
LOG(INFO) << "Hook " << m.name() << " to tvm vpi simulation...";
PackedFunc pf([p](const runtime::TVMArgs&, runtime::TVMRetValue*) {
p->AtPosEedge();
});
*rv = pf;
}
TVM_REGISTER_GLOBAL(_vpi_module_tvm_vpi_mem_interface)
.set_body(TVMVPIHook<VPIMemoryInterface>);
TVM_REGISTER_GLOBAL(_vpi_module_tvm_vpi_read_mmap)
.set_body(TVMVPIHook<VPIReadMemMap>);
TVM_REGISTER_GLOBAL(_vpi_module_tvm_vpi_write_mmap)
.set_body(TVMVPIHook<VPIWriteMemMap>);
} // namespace codegen
} // namespace tvm
......@@ -11,20 +11,19 @@ namespace codegen {
using namespace vpi;
/*! \brief Container for session. */
class VPISessionNode : public Node {
// helper class to get the node.
class VPISessionEntry {
public:
// Whether in control.
bool in_control{false};
// Internal reader and writer.
common::Pipe reader;
common::Pipe writer;
// internal constructor
VPISessionNode(int h_pipe_read, int h_pipe_write)
VPISessionEntry(int h_pipe_read, int h_pipe_write)
: reader(h_pipe_read), writer(h_pipe_write) {
}
~VPISessionNode() {
~VPISessionEntry() {
if (in_control) {
VPIReturnCode cd;
writer.Write(kShutDown);
......@@ -33,40 +32,11 @@ class VPISessionNode : public Node {
reader.Close();
writer.Close();
}
// visit all attributes
void VisitAttrs(AttrVisitor* v) final {
}
void ReadExpect(VPIReturnCode rcode) {
VPIReturnCode code;
CHECK(reader.Read(&code));
CHECK_EQ(code, rcode) << "Error in simulation";
}
static constexpr const char* _type_key = "VPISession";
TVM_DECLARE_NODE_TYPE_INFO(VPISessionNode, Node);
};
/*! \brief Container for handle */
class VPIHandleNode : public Node {
public:
// The internal session.
VPISession sess;
// Internal handle
VPIRawHandle handle;
void VisitAttrs(AttrVisitor* v) final {
v->Visit("sess", &sess);
}
static VPIHandle make(const VPISession& sess, VPIRawHandle handle) {
std::shared_ptr<VPIHandleNode> n =
std::make_shared<VPIHandleNode>();
n->sess = sess;
n->handle = handle;
return VPIHandle(n);
}
static constexpr const char* _type_key = "VPIHandle";
TVM_DECLARE_NODE_TYPE_INFO(VPIHandleNode, Node);
};
// Inline implementations
......@@ -77,34 +47,99 @@ inline VPIHandleNode* VPIHandle::get() const {
return static_cast<VPIHandleNode*>(node_.get());
}
VPISession VPISession::make(int h_pipe_read, int h_pipe_write) {
std::shared_ptr<VPISessionNode> n = std::make_shared<VPISessionNode>(
h_pipe_read, h_pipe_write);
n->ReadExpect(kPosEdgeTrigger);
n->in_control = true;
return VPISession(n);
VPIHandle VPIHandleCreate(
const std::shared_ptr<VPISessionEntry>& sess,
VPIRawHandle handle) {
std::shared_ptr<VPIHandleNode> n = std::make_shared<VPIHandleNode>();
n->sess = sess;
n->handle = handle;
return VPIHandle(n);
}
VPIHandle VPISession::operator[](const std::string& name) const {
return GetByName(name, nullptr);
}
VPIHandle VPISession::GetByName(const std::string& name, VPIRawHandle handle) const {
VPISessionNode* n = get();
VPIHandle GetHandleByName(
const std::shared_ptr<VPISessionEntry>& sess,
const std::string& name,
VPIRawHandle handle,
bool allow_undefined) {
VPISessionEntry* n = sess.get();
CHECK(n->in_control);
n->writer.Write(kGetHandleByName);
n->writer.Write(name);
n->writer.Write(handle);
n->ReadExpect(kSuccess);
CHECK(n->reader.Read(&handle));
CHECK(handle != nullptr)
<< "Cannot find handle with name=" << name;
return VPIHandleNode::make(*this, handle);
if (handle != nullptr) {
return VPIHandleCreate(sess, handle);
} else {
CHECK(allow_undefined)
<< "Cannot find handle with name=" << name;
return VPIHandle();
}
}
std::string VPIGetStrProp(VPIHandleNode* h, int code) {
VPISessionEntry* n = h->sess.get();
CHECK(n->in_control);
n->writer.Write(kGetStrProp);
n->writer.Write(code);
n->writer.Write(h->handle);
n->ReadExpect(kSuccess);
std::string str;
CHECK(n->reader.Read(&str));
return str;
}
int VPIGetIntProp(VPIHandleNode* h, int code) {
VPISessionEntry* n = h->sess.get();
CHECK(n->in_control);
n->writer.Write(kGetIntProp);
n->writer.Write(code);
n->writer.Write(h->handle);
n->ReadExpect(kSuccess);
int value;
CHECK(n->reader.Read(&value));
return value;
}
VPISession VPISession::make(int h_pipe_read, int h_pipe_write) {
std::shared_ptr<VPISessionNode> n = std::make_shared<VPISessionNode>();
n->sess = std::make_shared<VPISessionEntry>(h_pipe_read, h_pipe_write);
n->sess->in_control = true;
VPISession sess(n);
// The custom module handles
std::vector<VPIRawHandle> mod_handles;
n->sess->reader.Read(&mod_handles);
n->sess->ReadExpect(kPosEdgeTrigger);
// start Initialize the callbacks
for (VPIRawHandle raw_h : mod_handles) {
VPIHandle h = VPIHandleCreate(n->sess, raw_h);
CHECK_EQ(VPIGetIntProp(h.get(), kVPIType), kVPIModule)
<< "Expect pass modules to $tvm_session after clk";
std::string def = VPIGetStrProp(h.get(), kVPIDefName);
std::string callback_name = "_vpi_module_" + def;
const PackedFunc* f = runtime::Registry::Get(callback_name);
CHECK(f != nullptr)
<< "Cannot find definition for tvm vpi module " << def;
PackedFunc cb = (*f)(h);
n->posedge_end_callbacks.push_back(cb);
}
return sess;
}
VPIHandle VPISession::operator[](const std::string& name) const {
return GetHandleByName(get()->sess, name, nullptr, false);
}
VPIHandle VPISession::GetByName(const std::string& name,
bool allow_undefined) const {
return GetHandleByName(get()->sess, name, nullptr, true);
}
void VPISession::yield() {
VPISessionNode* n = get();
VPISessionEntry* n = get()->sess.get();
CHECK(n->in_control);
for (const PackedFunc& f : get()->posedge_end_callbacks) {
f();
}
n->writer.Write(kYield);
n->ReadExpect(kSuccess);
n->in_control = false;
......@@ -113,7 +148,7 @@ void VPISession::yield() {
}
void VPISession::shutdown() {
VPISessionNode* n = get();
VPISessionEntry* n = get()->sess.get();
if (n->in_control) {
n->writer.Write(kShutDown);
n->ReadExpect(kSuccess);
......@@ -122,20 +157,12 @@ void VPISession::shutdown() {
}
int VPIHandle::size() const {
VPIHandleNode* h = get();
VPISessionNode* n = h->sess.get();
CHECK(n->in_control);
n->writer.Write(kGetSize);
n->writer.Write(h->handle);
n->ReadExpect(kSuccess);
int value;
CHECK(n->reader.Read(&value));
return value;
return VPIGetIntProp(get(), kVPISize);
}
void VPIHandle::put_int(int value) {
VPIHandleNode* h = get();
VPISessionNode* n = h->sess.get();
VPISessionEntry* n = h->sess.get();
CHECK(n->in_control);
n->writer.Write(kPutInt32);
n->writer.Write(h->handle);
......@@ -145,7 +172,7 @@ void VPIHandle::put_int(int value) {
int VPIHandle::get_int() const {
VPIHandleNode* h = get();
VPISessionNode* n = h->sess.get();
VPISessionEntry* n = h->sess.get();
CHECK(n->in_control);
n->writer.Write(kGetInt32);
n->writer.Write(h->handle);
......@@ -156,20 +183,12 @@ int VPIHandle::get_int() const {
}
std::string VPIHandle::name() const {
VPIHandleNode* h = get();
VPISessionNode* n = h->sess.get();
CHECK(n->in_control);
n->writer.Write(kGetName);
n->writer.Write(h->handle);
n->ReadExpect(kSuccess);
std::string str;
CHECK(n->reader.Read(&str));
return str;
return VPIGetStrProp(get(), kVPIFullName);
}
void VPIHandle::put_vec(const std::vector<VPIVecVal>& vec) const {
VPIHandleNode* h = get();
VPISessionNode* n = h->sess.get();
VPISessionEntry* n = h->sess.get();
CHECK(n->in_control);
n->writer.Write(kPutVec);
n->writer.Write(h->handle);
......@@ -179,17 +198,17 @@ void VPIHandle::put_vec(const std::vector<VPIVecVal>& vec) const {
void VPIHandle::get_vec(std::vector<VPIVecVal>* vec) const {
VPIHandleNode* h = get();
VPISessionNode* n = h->sess.get();
VPISessionEntry* n = h->sess.get();
CHECK(n->in_control);
n->writer.Write(kPutVec);
n->writer.Write(kGetVec);
n->writer.Write(h->handle);
n->ReadExpect(kSuccess);
CHECK(n->reader.Read(&vec));
CHECK(n->reader.Read(vec));
}
VPIHandle VPIHandle::operator[](const std::string& name) const {
VPIHandleNode* h = get();
return h->sess.GetByName(name, h->handle);
return GetHandleByName(h->sess, name, h->handle, false);
}
// API registration
......
......@@ -14,10 +14,14 @@
namespace tvm {
namespace codegen {
// node containers
class VPISessionNode;
class VPIHandleNode;
class VPIHandle;
class VPISessionEntry;
using runtime::PackedFunc;
/*! \brief Environment */
class VPISession : public NodeRef {
......@@ -30,6 +34,12 @@ class VPISession : public NodeRef {
*/
VPIHandle operator[](const std::string& name) const;
/*!
* \brief Get handle by name.
* \param name The name of the handle.
* \param allow_undefined whether allow undefined
*/
VPIHandle GetByName(const std::string& name, bool allow_undefined) const;
/*!
* \brief Yield control back to the simulator
* Block until next cycle.
*/
......@@ -46,12 +56,7 @@ class VPISession : public NodeRef {
static VPISession make(int h_pipe_read, int h_pipe_write);
// Internal methods.
using ContainerType = VPISessionNode;
private:
friend class VPIHandle;
inline VPISessionNode* get() const;
// Get handle by name
VPIHandle GetByName(const std::string& name, vpi::VPIRawHandle handle) const;
};
/*! \brief VPI Handle */
......@@ -91,10 +96,39 @@ class VPIHandle : public NodeRef {
void get_vec(std::vector<vpi::VPIVecVal>* vec) const;
// Internal methods
using ContainerType = VPIHandleNode;
private:
inline VPIHandleNode* get() const;
};
/*! \brief Container for session. */
class VPISessionNode : public Node {
public:
// internal session.
std::shared_ptr<VPISessionEntry> sess;
// callbacks at pos edge end.
std::vector<PackedFunc> posedge_end_callbacks;
// visit all attributes
void VisitAttrs(AttrVisitor* v) final {
}
static constexpr const char* _type_key = "VPISession";
TVM_DECLARE_NODE_TYPE_INFO(VPISessionNode, Node);
};
/*! \brief Container for handle */
class VPIHandleNode : public Node {
public:
// internal session.
std::shared_ptr<VPISessionEntry> sess;
// Internal handle
vpi::VPIRawHandle handle;
void VisitAttrs(AttrVisitor* v) final {
}
static constexpr const char* _type_key = "VPIHandle";
TVM_DECLARE_NODE_TYPE_INFO(VPIHandleNode, Node);
};
} // namespace codegen
} // namespace tvm
#endif // TVM_CODEGEN_VERILOG_VPI_SESSION_H_
......@@ -106,7 +106,7 @@ LoweredFunc MakeAPI(Stmt body,
for (int i = 0; i < static_cast<int>(api_args.size()); ++i) {
Var v_arg = f_arg_decl(i);
if (i < static_cast<size_t>(num_packed_args)) {
if (i < num_packed_args) {
seq_init.emplace_back(LetStmt::make(
v_arg, f_arg_value(v_arg.type(), i), nop));
} else {
......
......@@ -23,7 +23,7 @@ namespace runtime {
class DeviceAPIManager {
public:
static const int kMaxDeviceAPI = 16;
static const int kMaxDeviceAPI = 32;
// Get API
static DeviceAPI* Get(TVMContext ctx) {
return Global()->GetAPI(ctx.device_type);
......
/*!
* Copyright (c) 2016 by Contributors
* \file device_api_gpu.h
* \brief GPU specific API
* \file cpu_device_api.cc
*/
#ifndef TVM_RUNTIME_DEVICE_API_CPU_H_
#define TVM_RUNTIME_DEVICE_API_CPU_H_
#include <dmlc/logging.h>
#include <tvm/runtime/registry.h>
#include <cstdlib>
......@@ -58,4 +54,3 @@ TVM_REGISTER_GLOBAL(_device_api_cpu)
});
} // namespace runtime
} // namespace tvm
#endif // TVM_RUNTIME_DEVICE_API_CPU_H_
......@@ -64,6 +64,7 @@ inline std::string DeviceName(DLDeviceType type) {
case kCPU: return "cpu";
case kGPU: return "gpu";
case kOpenCL: return "opencl";
case kVPI: return "vpi";
default: LOG(FATAL) << "unknown type =" << type; return "Unknown";
}
}
......
......@@ -134,7 +134,7 @@ bool InitOpenCL(TVMArgs args, TVMRetValue* rv) {
// matching conditions
std::string platform_name, device_type;
for (size_t i = 0; i < args.num_args; ++i) {
for (int i = 0; i < args.num_args; ++i) {
std::string arg = args[i];
size_t pos = arg.find_first_of('=');
CHECK_EQ(pos, std::string::npos)
......
......@@ -5,7 +5,10 @@ def enabled_ctx_list():
if tvm.module.enabled("opencl"):
tvm.module.init_opencl()
ctx_list = [('cpu', tvm.cpu(0)), ('gpu', tvm.gpu(0)), ('cl', tvm.opencl(0))]
ctx_list = [('cpu', tvm.cpu(0)),
('gpu', tvm.gpu(0)),
('cl', tvm.opencl(0)),
('cpu', tvm.vpi(0))]
ctx_list = [x[1] for x in ctx_list if tvm.module.enabled(x[0])]
return ctx_list
......
import tvm
import os
from tvm.addon import verilog
def test_counter():
......
import tvm
import os
from tvm.addon import verilog
def test_loop():
......
import tvm
import numpy as np
from tvm.addon import verilog
class FIFOReader(object):
"""Auxiliary class to read from FIFO """
def __init__(self, read_data, read_valid):
self.read_data = read_data
self.read_valid = read_valid
self.data = []
def __call__(self):
if self.read_valid.get_int():
self.data.append(self.read_data.get_int())
class FIFOWriter(object):
"""Auxiliary class to write to FIFO """
def __init__(self, write_data, write_enable, write_pend, data):
self.write_data = write_data
self.write_enable = write_enable
self.write_pend = write_pend
self.data = data
def __call__(self):
if self.data and self.write_pend.get_int():
self.write_enable.put_int(1)
self.write_data.put_int(int(self.data[0]))
del self.data[0]
else:
self.write_enable.put_int(0)
def test_ram_read():
n = 10
# context for VPI RAM
ctx = tvm.vpi(0)
a_np = np.arange(n).astype('int8')
a = tvm.nd.array(a_np, ctx)
# head ptr of a
a_ptr = int(a.handle[0].data)
sess = verilog.session([
verilog.find_file("test_vpi_mem_interface.v"),
verilog.find_file("tvm_vpi_mem_interface.v")
])
rst = sess.main.rst
read_data = sess.main.read_data
read_valid = sess.main.read_data_valid
read_en = sess.main.read_en
host_read_req = sess.main.read_req
host_read_addr = sess.main.read_addr
host_read_size = sess.main.read_size
rst.put_int(1)
sess.yield_until_posedge()
rst.put_int(0)
# hook up reader
reader = FIFOReader(read_data, read_valid)
sess.yield_callbacks.append(reader)
# request read
host_read_req.put_int(1)
host_read_addr.put_int(a_ptr)
host_read_size.put_int(a.shape[0])
sess.yield_until_posedge()
# second read request
host_read_addr.put_int(a_ptr + 2)
host_read_size.put_int(a.shape[0] - 2)
sess.yield_until_posedge()
host_read_req.put_int(0)
read_en.put_int(1)
# yield until read is done
for i in range(a.shape[0] * 3):
sess.yield_until_posedge()
# check if result matches
r = np.concatenate((a_np, a_np[2:]))
np.testing.assert_equal(np.array(reader.data), r)
def test_ram_write():
n = 10
# read from offset
offset = 2
# context for VPI RAM
ctx = tvm.vpi(0)
a_np = np.zeros(n).astype('int8')
a = tvm.nd.array(a_np, ctx)
w_data = list(range(2, n))
r_data = np.array(w_data, dtype='int8')
# head ptr of a
a_ptr = int(a.handle[0].data)
sess = verilog.session([
verilog.find_file("test_vpi_mem_interface.v"),
verilog.find_file("tvm_vpi_mem_interface.v")
])
rst = sess.main.rst
write_data = sess.main.write_data
write_en = sess.main.write_en
write_ready = sess.main.write_data_ready
host_write_req = sess.main.write_req
host_write_addr = sess.main.write_addr
host_write_size = sess.main.write_size
rst.put_int(1)
sess.yield_until_posedge()
rst.put_int(0)
# hook up writeer
writer = FIFOWriter(write_data, write_en, write_ready, w_data)
sess.yield_callbacks.append(writer)
# request write
host_write_req.put_int(1)
host_write_addr.put_int(a_ptr + offset)
host_write_size.put_int(a.shape[0] - offset)
sess.yield_until_posedge()
host_write_req.put_int(0)
# yield until write is done
for i in range(a.shape[0]+2):
sess.yield_until_posedge()
# check if result matches
np.testing.assert_equal(a.asnumpy()[2:], r_data)
if __name__ == "__main__":
test_ram_read()
test_ram_write()
module main();
parameter PER = 10;
parameter WIDTH = 8;
reg clk;
reg rst;
// read channels
reg read_en;
wire [WIDTH-1:0] read_data;
wire read_data_valid;
// write channels
reg write_en;
reg [WIDTH-1:0] write_data;
wire write_data_ready;
// controls
reg read_req;
reg [31:0] read_addr;
reg [31:0] read_size;
reg write_req;
reg [31:0] write_addr;
reg [31:0] write_size;
always begin
#(PER/2) clk =~ clk;
end
tvm_vpi_mem_interface #
(
.READ_WIDTH(WIDTH),
.WRITE_WIDTH(WIDTH),
.ADDR_WIDTH(32),
.SIZE_WIDTH(32)
)
mem
(
.clk(clk),
.rst(rst),
.read_en(read_en),
.read_data_out(read_data),
.read_data_valid(read_data_valid),
.write_en(write_en),
.write_data_in(write_data),
.write_data_ready(write_data_ready),
.host_read_req(read_req),
.host_read_addr(read_addr),
.host_read_size(read_size),
.host_write_req(write_req),
.host_write_addr(write_addr),
.host_write_size(write_size)
);
initial begin
// pass myram to session to hook it up with simulation
$tvm_session(clk, mem);
end
endmodule
import tvm
import numpy as np
from tvm.addon import verilog
def test_mmap():
n = 10
# context for VPI RAM
ctx = tvm.vpi(0)
a_np = np.arange(n).astype('int8')
a = tvm.nd.array(a_np, ctx)
# head ptr of a
a_ptr = int(a.handle[0].data)
sess = verilog.session([
verilog.find_file("test_vpi_mmap.v"),
verilog.find_file("tvm_vpi_mmap.v")
])
rst = sess.main.rst
read_addr = sess.main.read_addr
read_data = sess.main.read_data
write_addr = sess.main.write_addr
write_data = sess.main.write_data
write_en = sess.main.write_en
mmap_addr = sess.main.mmap_addr
# setup memory map.
rst.put_int(1)
sess.yield_until_posedge()
rst.put_int(0)
write_en.put_int(0)
mmap_addr.put_int(a_ptr)
sess.yield_until_posedge()
# read test
for i in range(n):
read_addr.put_int(i)
sess.yield_until_posedge()
# read addr get set this cycle
sess.yield_until_posedge()
# get the data out
assert(read_data.get_int() == i)
# write test
for i in reversed(range(n)):
write_addr.put_int(i)
write_en.put_int(1)
write_data.put_int(i + 1)
sess.yield_until_posedge()
write_en.put_int(0)
sess.yield_until_posedge()
np.testing.assert_equal(a.asnumpy(), a_np + 1)
if __name__ == "__main__":
test_mmap()
module main();
parameter PER = 10;
parameter DATA_WIDTH = 8;
parameter ADDR_WIDTH = 8;
reg clk;
reg rst;
// read channels
reg [ADDR_WIDTH-1:0] read_addr;
wire [DATA_WIDTH-1:0] read_data;
// write channels
reg [ADDR_WIDTH-1:0] write_addr;
reg [DATA_WIDTH-1:0] write_data;
reg write_en;
// mmap base
reg [31:0] mmap_addr;
always begin
#(PER/2) clk =~ clk;
end
tvm_vpi_read_mmap #
(
.DATA_WIDTH(DATA_WIDTH),
.ADDR_WIDTH(ADDR_WIDTH)
)
rmmap
(
.clk(clk),
.rst(rst),
.addr(read_addr),
.data_out(read_data),
.mmap_addr(mmap_addr)
);
tvm_vpi_write_mmap #
(
.DATA_WIDTH(DATA_WIDTH),
.ADDR_WIDTH(ADDR_WIDTH)
)
wmmap
(
.clk(clk),
.rst(rst),
.addr(write_addr),
.data_in(write_data),
.en(write_en),
.mmap_addr(mmap_addr)
);
initial begin
$tvm_session(clk, rmmap, wmmap);
end
endmodule
......@@ -13,8 +13,17 @@
namespace tvm {
namespace vpi {
// standard consistency checks
static_assert(sizeof(vpiHandle) == sizeof(VPIRawHandle),
"VPI handle condition");
"VPI standard");
// type codes
static_assert(vpiModule == kVPIModule, "VPI standard");
// Property code
static_assert(vpiType == kVPIType, "VPI standard");
static_assert(vpiFullName == kVPIFullName, "VPI standard");
static_assert(vpiSize == kVPISize, "VPI standard");
static_assert(vpiDefName == kVPIDefName, "VPI standard");
// IPC client for VPI
class IPCClient {
public:
......@@ -26,8 +35,11 @@ class IPCClient {
vpiHandle argv = vpi_handle(vpiSysTfCall, 0);
vpiHandle arg_iter = vpi_iterate(vpiArgument, argv);
clock_ = vpi_scan(arg_iter);
CHECK(vpi_scan(arg_iter) == nullptr)
<< "tvm_session can only take in one clock";
std::vector<VPIRawHandle> handles;
while (vpiHandle h = vpi_scan(arg_iter)) {
handles.push_back(h);
}
writer_.Write(handles);
PutInt(clock_, 0);
}
int Callback() {
......@@ -74,12 +86,21 @@ class IPCClient {
writer_.Write(handle);
break;
}
case kGetName: {
case kGetStrProp: {
CHECK(reader_.Read(&value));
CHECK(reader_.Read(&handle));
std::string prop = vpi_get_str(
value, static_cast<vpiHandle>(handle));
writer_.Write(kSuccess);
writer_.Write(prop);
break;
}
case kGetIntProp: {
CHECK(reader_.Read(&value));
CHECK(reader_.Read(&handle));
std::string name = vpi_get_str(
vpiFullName, static_cast<vpiHandle>(handle));
value = vpi_get(value, static_cast<vpiHandle>(handle));
writer_.Write(kSuccess);
writer_.Write(name);
writer_.Write(value);
break;
}
case kGetInt32: {
......@@ -97,13 +118,6 @@ class IPCClient {
writer_.Write(kSuccess);
break;
}
case kGetSize: {
CHECK(reader_.Read(&handle));
value = vpi_get(vpiSize, static_cast<vpiHandle>(handle));
writer_.Write(kSuccess);
writer_.Write(value);
break;
}
case kGetVec: {
CHECK(reader_.Read(&handle));
vpiHandle h = static_cast<vpiHandle>(handle);
......@@ -126,17 +140,19 @@ class IPCClient {
CHECK(reader_.Read(&vec_buf_));
CHECK(handle != clock_) << "Cannot write to clock";
vpiHandle h = static_cast<vpiHandle>(handle);
size_t nwords = vec_buf_.size();
svec_buf_.resize(nwords);
reader_.Read(&vec_buf_[0], nwords * sizeof(s_vpi_vecval));
svec_buf_.resize(vec_buf_.size());
for (size_t i = 0; i < vec_buf_.size(); ++i) {
svec_buf_[i].aval = vec_buf_[i].aval;
svec_buf_[i].bval = vec_buf_[i].bval;
}
s_vpi_value value_s;
s_vpi_time time_s;
time_s.type = vpiSimTime;
time_s.high = 0;
time_s.low = 0;
value_s.format = vpiVectorVal;
value_s.value.vector = &svec_buf_[0];
vpi_put_value(h, &value_s, 0, vpiNoDelay);
vpi_put_value(h, &value_s, &time_s, vpiInertialDelay);
writer_.Write(kSuccess);
break;
}
......@@ -183,9 +199,13 @@ class IPCClient {
// Put integer into handle.
static void PutInt(vpiHandle h, int value) {
s_vpi_value value_s;
s_vpi_time time_s;
time_s.type = vpiSimTime;
time_s.high = 0;
time_s.low = 0;
value_s.format = vpiIntVal;
value_s.value.integer = value;
vpi_put_value(h, &value_s, 0, vpiNoDelay);
vpi_put_value(h, &value_s, &time_s, vpiInertialDelay);
}
// Handles
vpiHandle clock_;
......
......@@ -12,10 +12,10 @@ namespace vpi {
enum VPICallCode : int {
kGetHandleByName,
kGetHandleByIndex,
kGetName,
kGetStrProp,
kGetIntProp,
kGetInt32,
kPutInt32,
kGetSize,
kGetVec,
kPutVec,
kYield,
......@@ -28,6 +28,19 @@ enum VPIReturnCode : int {
kFail = 2
};
// VPI type code as in IEEE standard.
enum VPITypeCode {
kVPIModule = 32
};
// VPI property code as in IEEE standard.
enum VPIPropCode {
kVPIType = 1,
kVPIFullName = 3,
kVPISize = 4,
kVPIDefName = 9
};
/*! \brief The vector value used in trasmission */
struct VPIVecVal {
int aval;
......
// Memory controller to access TVM VPI simulated RAM.
//
// You only see the wires and registers but no logics here.
// The real computation is implemented via TVM VPI
//
// Usage: create and pass instance to additional arguments of $tvm_session.
// Then it will be automatically hook up the RAM logic.
//
module tvm_vpi_mem_interface
#(
parameter READ_WIDTH = 8,
parameter WRITE_WIDTH = 8,
parameter ADDR_WIDTH = 32,
parameter SIZE_WIDTH = 32
)
(
input clk,
input rst,
// Read Ports
input read_en, // Read buffer enable
output [READ_WIDTH-1:0] read_data_out, // The data port for read
output read_data_valid, // Read is valid.
// Write ports
input write_en, // Write buffer enable
input [WRITE_WIDTH-1:0] write_data_in, // Input data to write.
output write_data_ready, // There are still pending write
// Status port
// Control signal ports to issue tasks
input host_read_req, // Read request
input [ADDR_WIDTH-1:0] host_read_addr, // The address to issue a read task
input [SIZE_WIDTH-1:0] host_read_size, // The size of a read
input host_write_req, // Write request.
input [ADDR_WIDTH-1:0] host_write_addr, // The write address
input [SIZE_WIDTH-1:0] host_write_size // The write size
);
reg [READ_WIDTH-1:0] reg_read_data;
reg reg_read_valid;
reg reg_write_ready;
// The wires up.
assign read_data_out = reg_read_data;
assign read_data_valid = reg_read_valid;
assign write_data_ready = reg_write_ready;
endmodule
// TVM mmap maps virtual DRAM into interface of SRAM.
// This allows create testcases that directly access DRAM.
// Read only memory map, one cycle read.
// Usage: create and pass instance to additional arguments of $tvm_session.
module tvm_vpi_read_mmap
#(
parameter DATA_WIDTH = 8,
parameter ADDR_WIDTH = 8,
parameter BASE_ADDR_WIDTH = 32
)
(
input clk,
input rst,
// Read Ports
input [ADDR_WIDTH-1:0] addr, // Local offset in terms of number of units
output [DATA_WIDTH-1:0] data_out, // The data port for read
// Configure port
input [BASE_ADDR_WIDTH-1:0] mmap_addr // The base address of memory map.
);
reg [DATA_WIDTH-1:0] reg_data;
assign data_out = reg_data;
endmodule
// Write only memory map, one cycle write.
// Usage: create and pass instance to additional arguments of $tvm_session.
module tvm_vpi_write_mmap
#(
parameter DATA_WIDTH = 8,
parameter ADDR_WIDTH = 8,
parameter BASE_ADDR_WIDTH = 32
)
(
input clk,
input rst,
// Write Ports
input [ADDR_WIDTH-1:0] addr, // Local offset in terms of number of units
input [DATA_WIDTH-1:0] data_in, // The data port for write
input en, // The enable port for write
// Configure port
input [BASE_ADDR_WIDTH-1:0] mmap_addr // The base address of memap
);
endmodule
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment