Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
98003afa
Commit
98003afa
authored
Nov 29, 2018
by
Dmitrii Murygin
Committed by
Tianqi Chen
Nov 28, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TOPI] Add tensor multiplication. (#2106)
parent
bbc78221
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
164 additions
and
0 deletions
+164
-0
topi/include/topi/transform.h
+115
-0
topi/python/topi/transform.py
+20
-0
topi/src/topi.cc
+12
-0
topi/tests/python/test_topi_matmul.py
+17
-0
No files found.
topi/include/topi/transform.h
View file @
98003afa
...
...
@@ -753,6 +753,121 @@ inline tvm::Tensor matmul(const tvm::Tensor& A,
return
tvm
::
compute
(
output_shape
,
l
,
name
,
tag
);
}
/*!
* \brief A generalization of matrix multiplication to tensors.
*
* \param A The tensor A
* \param B The tensor B
* \param axes The number of the dimensions to reduce over
* \param name The name of the operation
* \param tag The tag to mark the operation
*
* \return A Tensor computing the result
*/
inline
Tensor
tensordot
(
const
Tensor
&
A
,
const
tvm
::
Tensor
&
B
,
int
axes
=
2
,
std
::
string
name
=
"tensor"
,
std
::
string
tag
=
kMatMul
)
{
CHECK_GE
(
A
->
shape
.
size
(),
axes
);
CHECK_GE
(
B
->
shape
.
size
(),
axes
);
Array
<
Expr
>
output_shape
(
A
->
shape
.
begin
(),
A
->
shape
.
end
()
+
(
-
axes
));
for
(
auto
it
=
B
->
shape
.
begin
()
+
axes
;
it
!=
B
->
shape
.
end
();
++
it
)
output_shape
.
push_back
(
*
it
);
Array
<
IterVar
>
iter_vars
;
for
(
int
i
=
0
;
i
<
axes
;
++
i
)
iter_vars
.
push_back
(
reduce_axis
(
Range
(
0
,
B
->
shape
[
i
]),
"k"
+
std
::
to_string
(
i
)));
auto
func
=
[
&
A
,
&
B
,
&
iter_vars
,
axes
]
(
const
Array
<
Var
>&
input_indices
)
{
Array
<
Expr
>
A_indices
(
input_indices
.
begin
(),
input_indices
.
begin
()
+
(
A
->
shape
.
size
()
-
axes
));
for
(
auto
&
v
:
iter_vars
)
A_indices
.
push_back
(
v
);
Array
<
Expr
>
B_indices
;
for
(
auto
&
v
:
iter_vars
)
B_indices
.
push_back
(
v
);
auto
it
=
input_indices
.
begin
()
+
(
A
->
shape
.
size
()
-
axes
);
for
(;
it
!=
input_indices
.
end
();
++
it
)
B_indices
.
push_back
(
*
it
);
// Some passes don't like reductions with empty axis, so avoid it here
if
(
iter_vars
.
empty
())
return
A
(
A_indices
)
*
B
(
B_indices
);
else
return
sum
(
A
(
A_indices
)
*
B
(
B_indices
),
iter_vars
);
};
return
compute
(
output_shape
,
func
,
name
,
tag
);
}
/*!
* \brief A generalization of matrix multiplication to tensors.
*
* \param A The tensor A
* \param B The tensor B
* \param A_axes The indices of the dimensions of tensor A to reduce over
* \param B_axes The indices of the dimensions of tensor B to reduce over
* \param name The name of the operation
* \param tag The tag to mark the operation
*
* \return A Tensor computing the result
*/
inline
Tensor
tensordot
(
const
Tensor
&
A
,
const
tvm
::
Tensor
&
B
,
Array
<
Expr
>
A_axes
,
Array
<
Expr
>
B_axes
,
std
::
string
name
=
"tensor"
,
std
::
string
tag
=
kMatMul
)
{
CHECK_EQ
(
A_axes
.
size
(),
B_axes
.
size
());
auto
A_axes_val
=
GetConstIntValues
(
A_axes
,
"A_axes"
);
auto
B_axes_val
=
GetConstIntValues
(
B_axes
,
"B_axes"
);
Array
<
Expr
>
output_shape
;
for
(
unsigned
i
=
0
;
i
<
A
->
shape
.
size
();
++
i
)
if
(
std
::
find
(
A_axes_val
.
begin
(),
A_axes_val
.
end
(),
i
)
==
A_axes_val
.
end
())
output_shape
.
push_back
(
A
->
shape
[
i
]);
for
(
unsigned
i
=
0
;
i
<
B
->
shape
.
size
();
++
i
)
if
(
std
::
find
(
B_axes_val
.
begin
(),
B_axes_val
.
end
(),
i
)
==
B_axes_val
.
end
())
output_shape
.
push_back
(
B
->
shape
[
i
]);
Array
<
IterVar
>
iter_vars
;
for
(
unsigned
i
=
0
;
i
<
B_axes_val
.
size
();
++
i
)
iter_vars
.
push_back
(
reduce_axis
(
Range
(
0
,
B
->
shape
[
B_axes_val
[
i
]]),
"k"
+
std
::
to_string
(
i
)));
auto
func
=
[
&
A
,
&
B
,
&
iter_vars
,
A_axes_val
,
B_axes_val
]
(
const
Array
<
Var
>&
input_indices
)
{
int
idx_input
=
0
;
Array
<
Expr
>
A_indices
;
for
(
unsigned
i
=
0
;
i
<
A
->
shape
.
size
();
++
i
)
{
auto
axes_pos
=
std
::
find
(
A_axes_val
.
begin
(),
A_axes_val
.
end
(),
i
);
if
(
axes_pos
==
A_axes_val
.
end
())
A_indices
.
push_back
(
input_indices
[
idx_input
++
]);
else
A_indices
.
push_back
(
iter_vars
[
axes_pos
-
A_axes_val
.
begin
()]);
}
Array
<
Expr
>
B_indices
;
for
(
unsigned
i
=
0
;
i
<
B
->
shape
.
size
();
++
i
)
{
auto
axes_pos
=
std
::
find
(
B_axes_val
.
begin
(),
B_axes_val
.
end
(),
i
);
if
(
axes_pos
==
B_axes_val
.
end
())
B_indices
.
push_back
(
input_indices
[
idx_input
++
]);
else
B_indices
.
push_back
(
iter_vars
[
axes_pos
-
B_axes_val
.
begin
()]);
}
return
sum
(
A
(
A_indices
)
*
B
(
B_indices
),
iter_vars
);
};
return
compute
(
output_shape
,
func
,
name
,
tag
);
}
}
// namespace topi
#endif // TOPI_TRANSFORM_H_
topi/python/topi/transform.py
View file @
98003afa
...
...
@@ -269,3 +269,23 @@ def matmul(a, b, transp_a=False, transp_b=False):
A Tensor whose op member is the matmul operation
"""
return
cpp
.
matmul
(
a
,
b
,
transp_a
,
transp_b
)
def
tensordot
(
a
,
b
,
axes
):
"""A generalization of matrix multiplication to tensor.
Parameters
----------
a : The tensor A
b : The tensor B
axes : The number of dimensions to reduce over
Returns
-------
A Tensor computing the result
"""
if
isinstance
(
axes
,
int
):
return
cpp
.
tensordot
(
a
,
b
,
axes
)
if
isinstance
(
axes
[
0
],
int
):
return
cpp
.
tensordot
(
a
,
b
,
(
axes
[
0
],),
(
axes
[
1
],))
return
cpp
.
tensordot
(
a
,
b
,
axes
[
0
],
axes
[
1
])
topi/src/topi.cc
View file @
98003afa
...
...
@@ -305,6 +305,18 @@ TVM_REGISTER_GLOBAL("topi.matmul")
default
:
CHECK
(
0
)
<<
"topi.matmul expects 2, 3 or 4 arguments"
;
}});
TVM_REGISTER_GLOBAL
(
"topi.tensordot"
)
.
set_body
([](
TVMArgs
args
,
TVMRetValue
*
rv
)
{
if
(
args
.
size
()
==
2
)
{
*
rv
=
tensordot
(
args
[
0
],
args
[
1
]);
}
else
if
(
args
.
size
()
==
3
)
{
*
rv
=
tensordot
(
args
[
0
],
args
[
1
],
args
[
2
]);
}
else
{
Array
<
Expr
>
axes
=
args
[
3
];
*
rv
=
tensordot
(
args
[
0
],
args
[
1
],
args
[
2
],
axes
);
}
});
TVM_REGISTER_GLOBAL
(
"topi.strided_slice"
)
.
set_body
([](
TVMArgs
args
,
TVMRetValue
*
rv
)
{
*
rv
=
strided_slice
(
args
[
0
],
args
[
1
],
args
[
2
],
args
[
3
]);
...
...
topi/tests/python/test_topi_matmul.py
View file @
98003afa
...
...
@@ -39,6 +39,23 @@ def test_matmul():
verify_matmul
((
3
,
5
),(
3
,
2
),
True
,
False
)
verify_matmul
((
3
,
5
),(
2
,
3
),
True
,
True
)
def
verify_tensordot
(
sa
,
sb
,
axes
):
a
=
np
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
sa
)
.
astype
(
np
.
float32
)
b
=
np
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
sb
)
.
astype
(
np
.
float32
)
c1
=
np
.
tensordot
(
a
,
b
,
axes
)
c2
=
with_tvm
(
lambda
A
,
B
:
topi
.
tensordot
(
A
,
B
,
axes
),
a
,
b
)
tvm
.
testing
.
assert_allclose
(
c1
,
c2
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_tensordot
():
verify_tensordot
((
3
),
(
3
),
0
)
verify_tensordot
((
2
,
3
),
(
3
,
5
),
1
)
verify_tensordot
((
2
,
2
,
3
),
(
2
,
3
,
5
),
2
)
verify_tensordot
((
2
,
2
,
3
,
4
),
(
2
,
3
,
4
,
5
),
3
)
verify_tensordot
((
3
,
2
,
2
),
(
2
,
3
,
5
),
(
1
,
0
))
verify_tensordot
((
3
,
2
,
2
),
(
2
,
3
,
5
),
((
1
,
0
),
(
0
,
1
)))
verify_tensordot
((
4
,
3
,
2
,
2
),
(
2
,
4
,
3
,
5
),
((
1
,
2
,
0
),
(
2
,
0
,
1
)))
if
__name__
==
"__main__"
:
test_matmul
()
test_tensordot
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment