Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
948f6898
Commit
948f6898
authored
Sep 21, 2017
by
Yuwei HU
Committed by
Tianqi Chen
May 29, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
register depthconv, elemwise (#17)
* register depthconv, elemwise * use global elemwise schedule for relu
parent
1bc5d0ad
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
239 additions
and
27 deletions
+239
-27
nnvm/python/nnvm/top/nn.py
+47
-20
nnvm/python/nnvm/top/tensor.py
+27
-0
nnvm/tests/python/compiler/test_top_level1.py
+117
-2
nnvm/tests/python/compiler/test_top_level2.py
+47
-5
nnvm/tests/python/unittest/test_top_level1.py
+1
-0
No files found.
nnvm/python/nnvm/top/nn.py
View file @
948f6898
...
...
@@ -3,9 +3,44 @@ from __future__ import absolute_import
import
tvm
import
topi
from
topi.util
import
get_const_int
from
.tensor
import
schedule_elemwise
from
..compiler
import
registry
as
reg
from
..compiler
import
OpPattern
# relu
@reg.register_compute
(
"relu"
)
def
compute_relu
(
attrs
,
inputs
):
"""Compute definition of relu"""
return
topi
.
nn
.
relu
(
inputs
[
0
])
@reg.register_schedule
(
"relu"
)
def
schedule_relu
(
_
,
outs
,
target
):
"""Schedule definition of relu"""
return
schedule_elemwise
(
_
,
outs
,
target
)
reg
.
register_pattern
(
"relu"
,
OpPattern
.
ELEM_WISE
)
# softmax
@reg.register_compute
(
"softmax"
)
def
compute_softmax
(
attrs
,
inputs
):
"""Compute definition of softmax"""
axis
=
attrs
.
get_int
(
"axis"
)
assert
axis
==
-
1
,
"only support axis == -1 for now"
return
topi
.
nn
.
softmax
(
inputs
[
0
])
@reg.register_schedule
(
"softmax"
)
def
schedule_softmax
(
_
,
outs
,
target
):
"""Schedule definition of softmax"""
if
target
==
"cuda"
:
return
topi
.
cuda
.
schedule_softmax
(
outs
)
# naive schedule
return
tvm
.
create_schedule
([
x
.
op
for
x
in
outs
])
reg
.
register_pattern
(
"softmax"
,
OpPattern
.
COMPLEX
)
# conv
@reg.register_compute
(
"conv2d"
)
def
compute_conv2d
(
attrs
,
inputs
):
...
...
@@ -13,10 +48,17 @@ def compute_conv2d(attrs, inputs):
padding
=
attrs
.
get_int_tuple
(
"padding"
)
strides
=
attrs
.
get_int_tuple
(
"strides"
)
dilation
=
attrs
.
get_int_tuple
(
"dilation"
)
groups
=
attrs
.
get_int
(
"groups"
)
channels
=
attrs
.
get_int
(
"channels"
)
layout
=
attrs
[
"layout"
]
assert
layout
==
"NCHW"
,
"only support nchw for now"
assert
dilation
==
(
1
,
1
),
"not support dilate now"
if
groups
==
1
:
out
=
topi
.
nn
.
conv2d_nchw
(
inputs
[
0
],
inputs
[
1
],
strides
,
padding
)
elif
groups
==
get_const_int
(
inputs
[
0
]
.
shape
[
1
])
and
groups
==
channels
:
out
=
topi
.
nn
.
depthwise_conv2d_nchw
(
inputs
[
0
],
inputs
[
1
],
strides
,
padding
)
else
:
raise
ValueError
(
"not support arbitrary group number for now"
)
if
attrs
.
get_bool
(
"use_bias"
):
bias
=
inputs
[
2
]
bias
=
topi
.
broadcast_to
(
bias
,
(
1
,
bias
.
shape
[
0
],
1
,
1
))
...
...
@@ -24,30 +66,15 @@ def compute_conv2d(attrs, inputs):
return
out
@reg.register_schedule
(
"conv2d"
)
def
schedule_conv2d
(
_
,
outs
,
target
):
def
schedule_conv2d
(
attrs
,
outs
,
target
):
"""Schedule definition of conv2d"""
groups
=
attrs
.
get_int
(
"groups"
)
if
target
==
"cuda"
:
if
groups
==
1
:
return
topi
.
cuda
.
schedule_conv2d_nchw
(
outs
)
else
:
return
topi
.
cuda
.
schedule_depthwise_conv2d_nchw
(
outs
)
# naive schedule
return
tvm
.
create_schedule
([
x
.
op
for
x
in
outs
])
reg
.
register_pattern
(
"conv2d"
,
OpPattern
.
COMPLEX
)
# softmax
@reg.register_compute
(
"softmax"
)
def
compute_softmax
(
attrs
,
inputs
):
"""Compute definition of softmax"""
axis
=
attrs
.
get_int
(
"axis"
)
assert
axis
==
-
1
,
"only support axis == -1 for now"
return
topi
.
nn
.
softmax
(
inputs
[
0
])
@reg.register_schedule
(
"softmax"
)
def
schedule_softmax
(
_
,
outs
,
target
):
"""Schedule definition of softmax"""
if
target
==
"cuda"
:
return
topi
.
cuda
.
schedule_softmax
(
outs
)
# naive schedule
return
tvm
.
create_schedule
([
x
.
op
for
x
in
outs
])
reg
.
register_pattern
(
"softmax"
,
OpPattern
.
COMPLEX
)
nnvm/python/nnvm/top/tensor.py
View file @
948f6898
...
...
@@ -8,6 +8,15 @@ import topi.cuda
from
..compiler
import
registry
as
reg
from
..compiler
import
OpPattern
def
schedule_elemwise
(
_
,
outs
,
target
):
"""Generic schedule for elemwise operation"""
if
target
==
"cuda"
:
return
topi
.
cuda
.
schedule_elemwise
(
outs
)
assert
target
.
startswith
(
"llvm"
)
s
=
tvm
.
create_schedule
([
x
.
op
for
x
in
outs
])
tvm
.
schedule
.
AutoInlineInjective
(
s
)
return
s
def
_schedule_broadcast
(
_
,
outs
,
target
):
"""Generic schedule for binary bcast"""
if
target
==
"cuda"
:
...
...
@@ -36,6 +45,24 @@ reg.register_compute("exp",
reg
.
register_pattern
(
"exp"
,
OpPattern
.
ELEM_WISE
)
reg
.
register_schedule
(
"exp"
,
_fschedule_broadcast
)
# log
reg
.
register_compute
(
"log"
,
lambda
_
,
x
:
topi
.
log
(
x
[
0
]))
reg
.
register_pattern
(
"log"
,
OpPattern
.
ELEM_WISE
)
reg
.
register_schedule
(
"log"
,
_fschedule_broadcast
)
# tanh
reg
.
register_compute
(
"tanh"
,
lambda
_
,
x
:
topi
.
tanh
(
x
[
0
]))
reg
.
register_pattern
(
"tanh"
,
OpPattern
.
ELEM_WISE
)
reg
.
register_schedule
(
"tanh"
,
_fschedule_broadcast
)
# sigmoid
reg
.
register_compute
(
"sigmoid"
,
lambda
_
,
x
:
topi
.
sigmoid
(
x
[
0
]))
reg
.
register_pattern
(
"sigmoid"
,
OpPattern
.
ELEM_WISE
)
reg
.
register_schedule
(
"sigmoid"
,
_fschedule_broadcast
)
# add scalar
reg
.
register_compute
(
"__add_scalar__"
,
_compute_binary_scalar
(
lambda
x
,
y
:
x
+
y
))
...
...
nnvm/tests/python/compiler/test_top_level1.py
View file @
948f6898
...
...
@@ -20,6 +20,116 @@ def default_ctx():
else
:
return
tvm
.
cpu
(
0
)
def
test_relu
():
x
=
sym
.
Variable
(
"x"
)
y
=
sym
.
relu
(
x
)
dtype
=
"float32"
dshape
=
(
1
,
3
,
32
,
32
)
oshape
=
dshape
graph
,
lib
=
nnvm
.
compiler
.
build
(
y
,
default_target
(),
{
"x"
:
dshape
})
m
=
nnvm
.
runtime
.
create
(
graph
,
lib
,
default_ctx
())
# get member functions
set_input
,
run
,
get_output
=
m
[
"set_input"
],
m
[
"run"
],
m
[
"get_output"
]
# set input
data
=
tvm
.
nd
.
array
(
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
))
set_input
(
"x"
,
data
)
# execute
run
()
# get output
out
=
tvm
.
nd
.
empty
(
oshape
,
dtype
)
get_output
(
0
,
out
)
y_np
=
np
.
maximum
(
data
.
asnumpy
(),
0.0
)
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
y_np
,
atol
=
1e-5
,
rtol
=
1e-5
)
def
test_exp
():
x
=
sym
.
Variable
(
"x"
)
y
=
sym
.
exp
(
x
)
dtype
=
"float32"
dshape
=
(
1
,
3
,
32
,
32
)
oshape
=
dshape
graph
,
lib
=
nnvm
.
compiler
.
build
(
y
,
default_target
(),
{
"x"
:
dshape
})
m
=
nnvm
.
runtime
.
create
(
graph
,
lib
,
default_ctx
())
# get member functions
set_input
,
run
,
get_output
=
m
[
"set_input"
],
m
[
"run"
],
m
[
"get_output"
]
# set input
data
=
tvm
.
nd
.
array
(
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
))
set_input
(
"x"
,
data
)
# execute
run
()
# get output
out
=
tvm
.
nd
.
empty
(
oshape
,
dtype
)
get_output
(
0
,
out
)
y_np
=
np
.
exp
(
data
.
asnumpy
())
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
y_np
,
atol
=
1e-5
,
rtol
=
1e-5
)
def
test_log
():
x
=
sym
.
Variable
(
"x"
)
y
=
sym
.
log
(
x
)
dtype
=
"float32"
dshape
=
(
1
,
3
,
32
,
32
)
oshape
=
dshape
graph
,
lib
=
nnvm
.
compiler
.
build
(
y
,
default_target
(),
{
"x"
:
dshape
})
m
=
nnvm
.
runtime
.
create
(
graph
,
lib
,
default_ctx
())
# get member functions
set_input
,
run
,
get_output
=
m
[
"set_input"
],
m
[
"run"
],
m
[
"get_output"
]
# set input
data
=
tvm
.
nd
.
array
(
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
))
set_input
(
"x"
,
data
)
# execute
run
()
# get output
out
=
tvm
.
nd
.
empty
(
oshape
,
dtype
)
get_output
(
0
,
out
)
y_np
=
np
.
log
(
data
.
asnumpy
())
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
y_np
,
atol
=
1e-5
,
rtol
=
1e-5
)
def
test_tanh
():
x
=
sym
.
Variable
(
"x"
)
y
=
sym
.
tanh
(
x
)
dtype
=
"float32"
dshape
=
(
1
,
3
,
32
,
32
)
oshape
=
dshape
graph
,
lib
=
nnvm
.
compiler
.
build
(
y
,
default_target
(),
{
"x"
:
dshape
})
m
=
nnvm
.
runtime
.
create
(
graph
,
lib
,
default_ctx
())
# get member functions
set_input
,
run
,
get_output
=
m
[
"set_input"
],
m
[
"run"
],
m
[
"get_output"
]
# set input
data
=
tvm
.
nd
.
array
(
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
))
set_input
(
"x"
,
data
)
# execute
run
()
# get output
out
=
tvm
.
nd
.
empty
(
oshape
,
dtype
)
get_output
(
0
,
out
)
y_np
=
np
.
sinh
(
data
.
asnumpy
())
/
np
.
cosh
(
data
.
asnumpy
())
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
y_np
,
atol
=
1e-5
,
rtol
=
1e-5
)
def
test_sigmoid
():
x
=
sym
.
Variable
(
"x"
)
y
=
sym
.
sigmoid
(
x
)
dtype
=
"float32"
dshape
=
(
1
,
3
,
32
,
32
)
oshape
=
dshape
graph
,
lib
=
nnvm
.
compiler
.
build
(
y
,
default_target
(),
{
"x"
:
dshape
})
m
=
nnvm
.
runtime
.
create
(
graph
,
lib
,
default_ctx
())
# get member functions
set_input
,
run
,
get_output
=
m
[
"set_input"
],
m
[
"run"
],
m
[
"get_output"
]
# set input
data
=
tvm
.
nd
.
array
(
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
))
set_input
(
"x"
,
data
)
# execute
run
()
# get output
out
=
tvm
.
nd
.
empty
(
oshape
,
dtype
)
get_output
(
0
,
out
)
y_np
=
1.0
/
(
1.0
+
np
.
exp
(
-
data
.
asnumpy
()))
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
y_np
,
atol
=
1e-5
,
rtol
=
1e-5
)
def
test_softmax
():
x
=
sym
.
Variable
(
"x"
)
y
=
sym
.
softmax
(
x
)
...
...
@@ -35,12 +145,17 @@ def test_softmax():
set_input
(
"x"
,
data
)
# execute
run
()
# get output
s
# get output
out
=
tvm
.
nd
.
empty
(
oshape
,
dtype
)
get_output
(
0
,
out
)
y_np
=
topi
.
testing
.
softmax_python
(
data
.
asnumpy
())
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
y_np
,
rtol
=
1e-5
)
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
y_np
,
atol
=
1e-5
,
rtol
=
1e-5
)
if
__name__
==
"__main__"
:
test_relu
()
test_exp
()
test_log
()
test_tanh
()
test_sigmoid
()
test_softmax
()
nnvm/tests/python/compiler/test_top_level2.py
View file @
948f6898
...
...
@@ -6,6 +6,20 @@ import nnvm.symbol as sym
import
nnvm.compiler
import
nnvm.runtime
USE_GPU
=
True
def
default_target
():
if
USE_GPU
:
return
'cuda'
else
:
return
'llvm'
def
default_ctx
():
if
USE_GPU
:
return
tvm
.
gpu
(
0
)
else
:
return
tvm
.
cpu
(
0
)
def
test_conv2d
():
x
=
sym
.
Variable
(
"x"
)
y
=
sym
.
conv2d
(
x
,
channels
=
10
,
kernel_size
=
(
3
,
3
),
...
...
@@ -15,25 +29,53 @@ def test_conv2d():
kshape
=
(
10
,
3
,
3
,
3
)
oshape
=
(
1
,
10
,
18
,
18
)
shape_dict
=
{
"x"
:
dshape
}
graph
,
lib
=
nnvm
.
compiler
.
build
(
y
,
"llvm"
,
shape_dict
)
m
=
nnvm
.
runtime
.
create
(
graph
,
lib
,
tvm
.
cpu
(
0
))
graph
,
lib
=
nnvm
.
compiler
.
build
(
y
,
default_target
()
,
shape_dict
)
m
=
nnvm
.
runtime
.
create
(
graph
,
lib
,
default_ctx
(
))
# get member functions
set_input
,
run
,
get_output
=
m
[
"set_input"
],
m
[
"run"
],
m
[
"get_output"
]
# set input
data
=
tvm
.
nd
.
array
(
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
))
kernel
=
tvm
.
nd
.
array
(
np
.
random
.
uniform
(
size
=
kshape
)
.
astype
(
dtype
))
set_input
(
"x"
,
data
)
set_input
(
"y_weight"
,
kernel
)
# execute
run
()
# get output
out
=
tvm
.
nd
.
empty
(
oshape
,
dtype
)
get_output
(
0
,
out
)
c_np
=
topi
.
testing
.
conv2d_nchw_python
(
data
.
asnumpy
(),
kernel
.
asnumpy
(),
1
,
1
)
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
c_np
,
rtol
=
1e-5
)
def
test_grouped_conv2d
():
x
=
sym
.
Variable
(
"x"
)
y
=
sym
.
conv2d
(
x
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
groups
=
32
,
name
=
"y"
,
use_bias
=
False
,
padding
=
(
1
,
1
))
dtype
=
"float32"
dshape
=
(
1
,
32
,
18
,
18
)
kshape
=
(
32
,
1
,
3
,
3
)
oshape
=
(
1
,
32
,
18
,
18
)
shape_dict
=
{
"x"
:
dshape
}
graph
,
lib
=
nnvm
.
compiler
.
build
(
y
,
default_target
(),
shape_dict
)
m
=
nnvm
.
runtime
.
create
(
graph
,
lib
,
default_ctx
())
# get member functions
set_input
,
run
,
get_output
=
m
[
"set_input"
],
m
[
"run"
],
m
[
"get_output"
]
# set input
data
=
tvm
.
nd
.
array
(
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
))
kernel
=
tvm
.
nd
.
array
(
np
.
random
.
uniform
(
size
=
kshape
)
.
astype
(
dtype
))
set_input
(
"x"
,
data
)
set_input
(
"y_weight"
,
kernel
)
# execute
run
()
# get output
s
# get output
out
=
tvm
.
nd
.
empty
(
oshape
,
dtype
)
get_output
(
0
,
out
)
c_np
=
topi
.
testing
.
conv2d_nchw_python
(
data
.
asnumpy
(),
kernel
.
asnumpy
(),
1
,
1
)
c_np
=
topi
.
testing
.
depthwise_conv2d_python_nchw
(
data
.
asnumpy
(),
kernel
.
asnumpy
(),
(
1
,
1
),
'SAME'
)
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
c_np
,
rtol
=
1e-5
)
if
__name__
==
"__main__"
:
test_conv2d
()
test_grouped_conv2d
()
nnvm/tests/python/unittest/test_top_level1.py
View file @
948f6898
...
...
@@ -25,6 +25,7 @@ def test_unary():
x
=
sym
.
log
(
x
)
x
=
sym
.
sigmoid
(
x
)
x
=
sym
.
tanh
(
x
)
x
=
sym
.
relu
(
x
)
assert
x
.
list_input_names
()
==
[
'x'
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment