Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
8f5c27bd
Commit
8f5c27bd
authored
Mar 01, 2019
by
Hao Jin
Committed by
Haichen Shen
Mar 01, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
support MXNet _minimum and _maximum (#2709)
parent
c8259e3e
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
72 additions
and
0 deletions
+72
-0
nnvm/python/nnvm/frontend/mxnet.py
+8
-0
nnvm/tests/python/frontend/mxnet/test_forward.py
+64
-0
No files found.
nnvm/python/nnvm/frontend/mxnet.py
View file @
8f5c27bd
...
@@ -286,6 +286,12 @@ def _lrn(inputs, attrs):
...
@@ -286,6 +286,12 @@ def _lrn(inputs, attrs):
new_attrs
[
'size'
]
=
_required_attr
(
attrs
,
'nsize'
)
new_attrs
[
'size'
]
=
_required_attr
(
attrs
,
'nsize'
)
return
_get_nnvm_op
(
op_name
)(
*
inputs
,
**
new_attrs
)
return
_get_nnvm_op
(
op_name
)(
*
inputs
,
**
new_attrs
)
def
_minimum
(
inputs
,
attrs
):
return
_get_nnvm_op
(
'broadcast_min'
)(
*
inputs
,
**
attrs
)
def
_maximum
(
inputs
,
attrs
):
return
_get_nnvm_op
(
'broadcast_max'
)(
*
inputs
,
**
attrs
)
def
_ones
(
_
,
attrs
):
def
_ones
(
_
,
attrs
):
op_name
=
'ones'
op_name
=
'ones'
return
_get_nnvm_op
(
op_name
)(
**
attrs
)
return
_get_nnvm_op
(
op_name
)(
**
attrs
)
...
@@ -330,6 +336,8 @@ _convert_map = {
...
@@ -330,6 +336,8 @@ _convert_map = {
'_rminus_scalar'
:
_rename
(
'__rsub_scalar__'
),
'_rminus_scalar'
:
_rename
(
'__rsub_scalar__'
),
'_contrib_MultiBoxPrior'
:
_rename
(
'multibox_prior'
),
'_contrib_MultiBoxPrior'
:
_rename
(
'multibox_prior'
),
'_contrib_MultiBoxDetection'
:
_contrib_multibox_detection
,
'_contrib_MultiBoxDetection'
:
_contrib_multibox_detection
,
'_minimum'
:
_minimum
,
'_maximum'
:
_maximum
,
'_ones'
:
_ones
,
'_ones'
:
_ones
,
'_zeros'
:
_zeros
,
'_zeros'
:
_zeros
,
'argmax'
:
_argmax
,
'argmax'
:
_argmax
,
...
...
nnvm/tests/python/frontend/mxnet/test_forward.py
View file @
8f5c27bd
...
@@ -227,6 +227,68 @@ def test_forward_slice():
...
@@ -227,6 +227,68 @@ def test_forward_slice():
mx_sym
=
mx
.
sym
.
slice
(
data
,
begin
=
(
-
1
,
1
),
end
=
(
-
3
,
4
),
step
=
(
-
1
,
2
))
mx_sym
=
mx
.
sym
.
slice
(
data
,
begin
=
(
-
1
,
1
),
end
=
(
-
3
,
4
),
step
=
(
-
1
,
2
))
verify_mxnet_frontend_impl
(
mx_sym
,
(
3
,
4
),
(
2
,
2
))
verify_mxnet_frontend_impl
(
mx_sym
,
(
3
,
4
),
(
2
,
2
))
def
test_forward_maximum
():
a
=
mx
.
sym
.
var
(
'a'
)
b
=
mx
.
sym
.
var
(
'b'
)
dshape
=
(
10
,
20
)
dtype
=
'float32'
mx_sym
=
mx
.
sym
.
_internal
.
_maximum
(
a
,
b
)
np_a
=
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
)
np_b
=
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
)
mx_a
=
mx
.
nd
.
array
(
np_a
)
mx_b
=
mx
.
nd
.
array
(
np_b
)
mod
=
mx
.
mod
.
Module
(
mx_sym
,
label_names
=
None
,
data_names
=
[
'a'
,
'b'
])
mod
.
bind
(
data_shapes
=
[(
'a'
,
dshape
),
(
'b'
,
dshape
)],
for_training
=
False
)
mod
.
init_params
()
args
,
auxs
=
mod
.
get_params
()
mx_out
=
mx
.
nd
.
_internal
.
_maximum
(
mx_a
,
mx_b
)
.
asnumpy
()
out_shape
=
dshape
new_sym
,
params
=
frontend
.
from_mxnet
(
mx_sym
,
args
,
auxs
)
shape_dict
=
{
'a'
:
dshape
,
'b'
:
dshape
}
for
target
,
ctx
in
ctx_list
():
with
nnvm
.
compiler
.
build_config
(
opt_level
=
3
):
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
new_sym
,
target
,
shape_dict
,
params
=
params
)
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
# set inputs
m
.
set_input
(
"a"
,
tvm
.
nd
.
array
(
np_a
))
m
.
set_input
(
"b"
,
tvm
.
nd
.
array
(
np_b
))
m
.
set_input
(
**
params
)
m
.
run
()
# get outputs
tvm_out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
(
out_shape
,
dtype
))
.
asnumpy
()
tvm
.
testing
.
assert_allclose
(
mx_out
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_forward_minimum
():
a
=
mx
.
sym
.
var
(
'a'
)
b
=
mx
.
sym
.
var
(
'b'
)
dshape
=
(
10
,
20
)
dtype
=
'float32'
mx_sym
=
mx
.
sym
.
_internal
.
_minimum
(
a
,
b
)
np_a
=
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
)
np_b
=
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
dtype
)
mx_a
=
mx
.
nd
.
array
(
np_a
)
mx_b
=
mx
.
nd
.
array
(
np_b
)
mod
=
mx
.
mod
.
Module
(
mx_sym
,
label_names
=
None
,
data_names
=
[
'a'
,
'b'
])
mod
.
bind
(
data_shapes
=
[(
'a'
,
dshape
),
(
'b'
,
dshape
)],
for_training
=
False
)
mod
.
init_params
()
args
,
auxs
=
mod
.
get_params
()
mx_out
=
mx
.
nd
.
_internal
.
_minimum
(
mx_a
,
mx_b
)
.
asnumpy
()
out_shape
=
dshape
new_sym
,
params
=
frontend
.
from_mxnet
(
mx_sym
,
args
,
auxs
)
shape_dict
=
{
'a'
:
dshape
,
'b'
:
dshape
}
for
target
,
ctx
in
ctx_list
():
with
nnvm
.
compiler
.
build_config
(
opt_level
=
3
):
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
new_sym
,
target
,
shape_dict
,
params
=
params
)
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
# set inputs
m
.
set_input
(
"a"
,
tvm
.
nd
.
array
(
np_a
))
m
.
set_input
(
"b"
,
tvm
.
nd
.
array
(
np_b
))
m
.
set_input
(
**
params
)
m
.
run
()
# get outputs
tvm_out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
(
out_shape
,
dtype
))
.
asnumpy
()
tvm
.
testing
.
assert_allclose
(
mx_out
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_forward_mlp
()
test_forward_mlp
()
...
@@ -251,4 +313,6 @@ if __name__ == '__main__':
...
@@ -251,4 +313,6 @@ if __name__ == '__main__':
test_forward_argmin
()
test_forward_argmin
()
test_forward_where
()
test_forward_where
()
test_forward_slice
()
test_forward_slice
()
test_forward_maximum
()
test_forward_minimum
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment