Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
8d945872
Unverified
Commit
8d945872
authored
Feb 12, 2020
by
Alex Gladkov
Committed by
GitHub
Feb 12, 2020
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Optimize x86 conv3d_ndhwc using data packing approach. (#4866)
Add tuneable conv3d_ndhwc schedule
parent
70c63829
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
381 additions
and
39 deletions
+381
-39
python/tvm/autotvm/task/relay_integration.py
+1
-0
python/tvm/autotvm/task/topi_integration.py
+12
-0
topi/python/topi/nn/util.py
+36
-0
topi/python/topi/x86/conv3d.py
+331
-38
topi/tests/python/test_topi_conv3d_ndhwc.py
+1
-1
No files found.
python/tvm/autotvm/task/relay_integration.py
View file @
8d945872
...
...
@@ -133,6 +133,7 @@ def extract_from_multiple_program(mods, params, ops, target, target_host=None,
tvm
.
relay
.
op
.
nn
.
batch_matmul
:
[
topi
.
nn
.
batch_matmul
],
tvm
.
relay
.
op
.
nn
.
deformable_conv2d
:
[
topi
.
nn
.
deformable_conv2d_nchw
],
tvm
.
relay
.
op
.
nn
.
conv1d_transpose
:
[
topi
.
nn
.
conv1d_transpose_ncw
],
tvm
.
relay
.
op
.
nn
.
conv3d
:
[
topi
.
nn
.
conv3d
],
}
topi_funcs
=
[]
...
...
python/tvm/autotvm/task/topi_integration.py
View file @
8d945872
...
...
@@ -94,6 +94,7 @@ class TaskExtractEnv:
topi
.
nn
.
bitserial_dense
:
"topi_nn_bitserial_dense"
,
topi
.
nn
.
deformable_conv2d_nchw
:
"topi_nn_deformable_conv2d_nchw"
,
topi
.
nn
.
conv1d_transpose_ncw
:
"topi_nn_conv1d_transpose_ncw"
,
topi
.
nn
.
conv3d
:
"topi_nn_conv3d"
,
}
self
.
topi_to_schedule
=
{
...
...
@@ -112,6 +113,7 @@ class TaskExtractEnv:
topi
.
nn
.
bitserial_dense
:
[
topi
.
generic
.
schedule_bitserial_dense
],
topi
.
nn
.
deformable_conv2d_nchw
:
[
topi
.
generic
.
schedule_deformable_conv2d_nchw
],
topi
.
nn
.
conv1d_transpose_ncw
:
[
topi
.
generic
.
schedule_conv1d_transpose_ncw
],
topi
.
nn
.
conv3d
:
[
topi
.
generic
.
schedule_conv3d_ndhwc
],
}
# function reflection for tracing
...
...
@@ -129,6 +131,7 @@ class TaskExtractEnv:
topi
.
nn
.
bitserial_dense
:
lambda
x
:
setattr
(
topi
.
nn
,
'bitserial_dense'
,
x
),
topi
.
nn
.
deformable_conv2d_nchw
:
lambda
x
:
setattr
(
topi
.
nn
,
'deformable_conv2d_nchw'
,
x
),
topi
.
nn
.
conv1d_transpose_ncw
:
lambda
x
:
setattr
(
topi
.
nn
,
'conv1d_transpose_ncw'
,
x
),
topi
.
nn
.
conv3d
:
lambda
x
:
setattr
(
topi
.
nn
,
'conv3d'
,
x
),
}
self
.
allow_duplicate
=
allow_duplicate
...
...
@@ -231,6 +234,15 @@ class TaskExtractEnv:
s
=
topi
.
generic
.
schedule_conv1d_transpose_ncw
([
C
])
return
s
,
[
A
,
W
,
C
]
@register
(
"topi_nn_conv3d"
)
def
_topi_nn_conv3d
(
*
args
,
**
kwargs
):
assert
not
kwargs
,
"Do not support kwargs in template function call"
args
=
deserialize_args
(
args
)
A
,
W
=
args
[:
2
]
C
=
topi
.
nn
.
conv3d
(
*
args
,
**
kwargs
)
s
=
topi
.
generic
.
schedule_conv3d_ndhwc
([
C
])
return
s
,
[
A
,
W
,
C
]
@register
(
"topi_nn_dense"
)
def
_topi_nn_dense
(
*
args
,
**
kwargs
):
assert
not
kwargs
,
"Do not support kwargs in template function call"
...
...
topi/python/topi/nn/util.py
View file @
8d945872
...
...
@@ -47,6 +47,42 @@ def infer_pad(data, data_pad):
wpad
=
(
TW
-
IW
)
//
2
return
get_const_int
(
hpad
),
get_const_int
(
wpad
)
def
infer_pad3d
(
data
,
data_pad
,
layout
):
"""Infer the padding from stages in reverse.
Parameters
----------
data : Tensor
data stage.
data_pad : Tensor
pad stage.
Returns
-------
dpad : int
padding depth
hpad : int
padding height
wpad : int
padding width
"""
if
data_pad
is
None
:
return
0
,
0
,
0
if
layout
==
"NDHWC"
:
_
,
ID
,
IH
,
IW
,
_
=
data
.
shape
_
,
TD
,
TH
,
TW
,
_
=
data_pad
.
shape
elif
layout
==
"NCDHW"
:
_
,
_
,
ID
,
IH
,
IW
=
data
.
shape
_
,
_
,
TD
,
TH
,
TW
=
data_pad
.
shape
else
:
raise
ValueError
(
"Layout {} is not supported"
.
format
(
layout
))
dpad
=
(
TD
-
ID
)
hpad
=
(
TH
-
IH
)
wpad
=
(
TW
-
IW
)
return
get_const_int
(
dpad
),
get_const_int
(
hpad
),
get_const_int
(
wpad
)
def
infer_stride
(
data
,
kernel
,
out
):
"""Infer the stride from stages in reverse.
...
...
topi/python/topi/x86/conv3d.py
View file @
8d945872
...
...
@@ -17,66 +17,359 @@
# pylint: disable=invalid-name, unused-variable, too-many-locals
# pylint: disable=unused-argument, redefined-builtin, no-else-return
"""Conv3D operators"""
from
collections
import
namedtuple
import
tvm
from
..
import
generic
,
tag
from
tvm
import
autotvm
from
tvm.autotvm.task.space
import
SplitEntity
,
OtherOptionEntity
from
..
import
generic
from
..util
import
traverse_inline
from
..nn.conv3d
import
conv3d
,
conv3d_ncdhw
from
..nn.util
import
get_pad_tuple3d
,
infer_pad3d
from
..nn.pad
import
pad
from
..util
import
get_const_tuple
,
simplify
,
get_const_int
from
.util
import
get_fp32_len
@generic.schedule_conv3d_ndhwc.register
(
"cpu"
)
def
schedule_conv3d_ndhwc
(
outs
):
"""TOPI schedule callback for conv3d
Workload3D
=
namedtuple
(
'Workload'
,
[
'in_dtype'
,
'out_dtype'
,
'depth'
,
'height'
,
'width'
,
'in_filter'
,
'groups'
,
'out_filter'
,
'dkernel'
,
'hkernel'
,
'wkernel'
,
'dpad'
,
'hpad'
,
'wpad'
,
'dstride'
,
'hstride'
,
'wstride'
])
@autotvm.register_topi_compute
(
conv3d
,
'cpu'
,
[
'direct'
])
def
_declaration_conv3d
(
cfg
,
data
,
kernel
,
strides
,
padding
,
dilation
,
layout
,
out_dtype
):
"""3D convolution forward operator.
Parameters
----------
input : tvm.Tensor
5-D input data with shapes:
[batch, in_channel, in_depth, in_height, in_width] for NCDHW layout
[batch, in_depth, in_height, in_width, in_channel] for NDHWC layout
filter : tvm.Tensor
5-D filter with shape [kernel_depth, kernel_height, kernel_width, in_channels, out_channels]
strides : int or a list/tuple of three ints
stride size, or [stride_depth, stride_height, stride_width]
padding : int or a list/tuple of three ints
padding size, or [pad_depth, pad_height, pad_width]
dilation: int or a list/tuple of three ints
dilation size, or [dilation_depth, dilation_height, dilation_width]
layout : str
layout of data
Returns
-------
output : tvm.Tensor
5-D with shape [batch, out_depth, out_height, out_width, out_channel] for NDHWC layout
5-D with shape [batch, out_channel, out_depth, out_height, out_width] for NCDHW layout
"""
out_dtype
=
data
.
dtype
if
out_dtype
is
None
else
out_dtype
strides
=
strides
if
isinstance
(
strides
,
(
tuple
,
list
))
else
(
strides
,
strides
,
strides
)
dilation
=
dilation
if
isinstance
(
dilation
,
(
tuple
,
list
))
else
(
dilation
,
dilation
,
dilation
)
if
layout
==
'NDHWC'
:
_create_tuning_space
(
cfg
,
data
,
kernel
,
strides
,
padding
,
dilation
,
layout
)
if
cfg
.
is_fallback
:
_get_default_config
(
cfg
,
data
,
kernel
,
strides
,
padding
,
out_dtype
,
layout
)
return
_conv3d_ndhwc
(
cfg
,
data
,
kernel
,
strides
,
padding
,
dilation
,
layout
,
out_dtype
)
elif
layout
==
'NCDHW'
:
return
conv3d_ncdhw
(
data
,
kernel
,
strides
,
padding
,
dilation
,
out_dtype
)
raise
ValueError
(
"Layout {} is not supported"
.
format
(
layout
))
@autotvm.register_topi_schedule
(
generic
.
schedule_conv3d_ndhwc
,
'cpu'
,
[
'direct'
])
def
schedule_conv3d_ndhwc
(
cfg
,
outs
):
"""TOPI schedule callback for conv3d
Parameters
----------
outs: Array of Tensor
The computation graph description of conv3d
in the format of an array of tensors.
Returns
-------
s: Schedule
The computation schedule for conv3d.
"""
s
=
tvm
.
create_schedule
([
x
.
op
for
x
in
outs
])
output_op
=
outs
[
0
]
.
op
def
_traverse
(
op
):
"""Traverse operators from computation graph"""
if
op
in
s
.
outputs
and
tag
.
is_broadcast
(
op
.
tag
)
and
len
(
op
.
axis
)
==
5
:
# schedule bias + bn + relu
n
,
d
,
h
,
w
,
c
=
op
.
axis
fused
=
s
[
op
]
.
fuse
(
n
,
d
,
h
,
w
)
s
[
op
]
.
parallel
(
fused
)
s
[
op
]
.
vectorize
(
c
)
if
'conv3d_ndhwc'
in
op
.
tag
:
conv
=
op
.
output
(
0
)
kernel
=
op
.
input_tensors
[
1
]
# dilation stage
output
=
op
.
output
(
0
)
conv_out
=
op
.
input_tensors
[
0
]
kernel_vec
=
conv_out
.
op
.
input_tensors
[
1
]
kernel
=
kernel_vec
.
op
.
input_tensors
[
0
]
if
isinstance
(
kernel
.
op
,
tvm
.
tensor
.
ComputeOp
)
and
"dilate"
in
kernel
.
op
.
tag
:
s
[
kernel
]
.
compute_inline
()
# padding stage
data
=
op
.
input_tensors
[
0
]
data_vec
=
conv_out
.
op
.
input_tensors
[
0
]
data
=
data_vec
.
op
.
input_tensors
[
0
]
data_pad
=
None
if
isinstance
(
data
.
op
,
tvm
.
tensor
.
ComputeOp
)
and
"pad"
in
data
.
op
.
tag
:
# fuse pad h and w
data_pad
=
data
data
=
data_pad
.
op
.
input_tensors
[
0
]
_
,
_
,
h_pad
,
w_pad
,
_
=
data_pad
.
op
.
axis
pad_fused
=
s
[
data_pad
]
.
fuse
(
h_pad
,
w_pad
)
s
[
data_pad
]
.
parallel
(
pad_fused
)
# compute conv
C
=
conv
n
,
d
,
h
,
w
,
c
=
s
[
C
]
.
op
.
axis
s
[
C
]
.
vectorize
(
c
)
if
op
!=
output_op
:
# fuse bias + bn + activation
_
,
_
,
_
,
_
,
c_out
=
output_op
.
axis
s
[
C
]
.
compute_at
(
s
[
output_op
],
c_out
)
else
:
# fuse batch, depth, height axes
fused
=
s
[
C
]
.
fuse
(
n
,
d
,
h
)
s
[
C
]
.
parallel
(
fused
)
traverse_inline
(
s
,
output_op
,
_traverse
)
kd
,
kh
,
kw
,
i
,
o
=
get_const_tuple
(
kernel
.
shape
)
args
=
[
s
,
cfg
,
data
,
data_pad
,
data_vec
,
kernel_vec
,
conv_out
,
output
,
outs
[
0
]]
_schedule_conv3d_ndhwc
(
*
args
)
traverse_inline
(
s
,
outs
[
0
]
.
op
,
_traverse
)
return
s
def
_conv3d_ndhwc
(
cfg
,
data
,
kernel
,
strides
,
padding
,
dilation
,
layout
,
out_dtype
):
out_dtype
=
data
.
dtype
if
out_dtype
is
None
else
out_dtype
assert
isinstance
(
dilation
,
int
)
or
len
(
dilation
)
==
3
if
isinstance
(
dilation
,
int
):
dilation_d
,
dilation_h
,
dilation_w
=
(
dilation
,
dilation
,
dilation
)
else
:
dilation_d
,
dilation_h
,
dilation_w
=
dilation
DSTR
,
HSTR
,
WSTR
=
strides
batch_size
,
in_depth
,
in_height
,
in_width
,
in_channel
=
get_const_tuple
(
data
.
shape
)
kernel_depth
,
kernel_height
,
kernel_width
,
_
,
num_filter
=
get_const_tuple
(
kernel
.
shape
)
dilated_kernel_d
=
(
kernel_depth
-
1
)
*
dilation_d
+
1
dilated_kernel_h
=
(
kernel_height
-
1
)
*
dilation_h
+
1
dilated_kernel_w
=
(
kernel_width
-
1
)
*
dilation_w
+
1
pad_front
,
pad_top
,
pad_left
,
pad_back
,
pad_down
,
pad_right
=
get_pad_tuple3d
(
padding
,
(
dilated_kernel_d
,
dilated_kernel_h
,
dilated_kernel_w
))
pad_d
=
pad_front
+
pad_back
pad_h
=
pad_top
+
pad_down
pad_w
=
pad_left
+
pad_right
pad_depth
=
in_depth
+
pad_d
pad_height
=
in_height
+
pad_h
pad_width
=
in_width
+
pad_w
out_depth
=
simplify
((
in_depth
+
pad_d
-
dilated_kernel_d
)
//
DSTR
+
1
)
out_height
=
simplify
((
in_height
+
pad_h
-
dilated_kernel_h
)
//
HSTR
+
1
)
out_width
=
simplify
((
in_width
+
pad_w
-
dilated_kernel_w
)
//
WSTR
+
1
)
# pack data
DOPAD
=
(
pad_d
!=
0
or
pad_h
!=
0
or
pad_w
!=
0
)
if
DOPAD
:
data_pad
=
pad
(
data
,
(
0
,
pad_front
,
pad_top
,
pad_left
,
0
),
(
0
,
pad_back
,
pad_down
,
pad_right
,
0
),
name
=
"data_pad"
)
else
:
data_pad
=
data
# fetch schedule
ic_bn
,
oc_bn
=
cfg
[
"tile_ic"
]
.
size
[
-
1
],
cfg
[
"tile_oc"
]
.
size
[
-
1
]
shape
=
(
batch_size
,
in_channel
//
ic_bn
,
pad_depth
,
pad_height
,
ic_bn
,
pad_width
)
data_vec
=
tvm
.
compute
(
shape
,
lambda
n
,
C
,
d
,
h
,
c
,
w
:
data_pad
[
n
,
d
,
h
,
w
,
C
*
ic_bn
+
c
],
name
=
'data_vec'
)
# pack kernel
shape
=
(
num_filter
//
oc_bn
,
in_channel
//
ic_bn
,
kernel_depth
,
kernel_height
,
kernel_width
,
ic_bn
,
oc_bn
)
kernel_vec
=
tvm
.
compute
(
shape
,
lambda
CO
,
CI
,
d
,
h
,
w
,
ci
,
co
:
kernel
[
d
,
h
,
w
,
CI
*
ic_bn
+
ci
,
CO
*
oc_bn
+
co
],
name
=
'kernel_vec'
)
# convolution
oshape
=
(
batch_size
,
num_filter
//
oc_bn
,
out_depth
,
out_height
,
out_width
,
oc_bn
)
unpack_shape
=
(
batch_size
,
out_depth
,
out_height
,
out_width
,
num_filter
)
ic
=
tvm
.
reduce_axis
((
0
,
in_channel
),
name
=
'ic'
)
kh
=
tvm
.
reduce_axis
((
0
,
kernel_height
),
name
=
'kh'
)
kw
=
tvm
.
reduce_axis
((
0
,
kernel_width
),
name
=
'kw'
)
kd
=
tvm
.
reduce_axis
((
0
,
kernel_depth
),
name
=
'kd'
)
idxmod
=
tvm
.
indexmod
idxdiv
=
tvm
.
indexdiv
conv
=
tvm
.
compute
(
oshape
,
lambda
n
,
oc_chunk
,
od
,
oh
,
ow
,
oc_block
:
tvm
.
sum
(
data_vec
[
n
,
idxdiv
(
ic
,
ic_bn
),
od
*
DSTR
+
kd
*
dilation_d
,
oh
*
HSTR
+
kh
*
dilation_h
,
idxmod
(
ic
,
ic_bn
),
ow
*
WSTR
+
kw
*
dilation_w
]
.
astype
(
out_dtype
)
*
kernel_vec
[
oc_chunk
,
idxdiv
(
ic
,
ic_bn
),
kd
,
kh
,
kw
,
idxmod
(
ic
,
ic_bn
),
oc_block
]
.
astype
(
out_dtype
),
axis
=
[
kd
,
kh
,
kw
,
ic
]),
name
=
'conv'
)
conv_unpacked
=
tvm
.
compute
(
unpack_shape
,
lambda
n
,
d
,
h
,
w
,
c
:
conv
[
n
,
idxdiv
(
c
,
oc_bn
),
d
,
h
,
w
,
idxmod
(
c
,
oc_bn
)]
.
astype
(
out_dtype
),
name
=
'output_unpack'
,
tag
=
'conv3d_ndhwc'
)
return
conv_unpacked
def
_create_tuning_space
(
cfg
,
data
,
kernel
,
strides
,
padding
,
dilation
,
layout
):
"""Create schedule configuration from input arguments"""
dshape
=
get_const_tuple
(
data
.
shape
)
kshape
=
get_const_tuple
(
kernel
.
shape
)
if
layout
==
'NDHWC'
:
n
,
d
,
h
,
w
,
ic
=
dshape
kd
,
kh
,
kw
,
_
,
oc
=
kshape
else
:
raise
ValueError
(
"Not support this layout {} with "
"schedule template."
.
format
(
layout
))
# pad_front, pad_top, pad_left, pad_back, pad_down(bottom), pad_right
pf
,
pt
,
pl
,
pb
,
pd
,
pr
=
get_pad_tuple3d
(
padding
,
(
kd
,
kh
,
kw
))
sd
,
sh
,
sw
=
strides
if
isinstance
(
strides
,
(
tuple
,
list
))
else
(
strides
,
strides
,
strides
)
od
=
(
d
-
kd
+
pf
+
pb
)
//
sd
+
1
oh
=
(
h
-
kh
+
pt
+
pd
)
//
sh
+
1
ow
=
(
w
-
kw
+
pl
+
pr
)
//
sw
+
1
# Create schedule config
cfg
.
define_split
(
"tile_ic"
,
ic
,
num_outputs
=
2
)
cfg
.
define_split
(
"tile_oc"
,
oc
,
num_outputs
=
2
)
cfg
.
define_split
(
"tile_ow"
,
ow
,
num_outputs
=
2
,
filter
=
lambda
y
:
y
.
size
[
-
1
]
<=
8
)
cfg
.
define_knob
(
"unroll_kw"
,
[
True
,
False
])
def
_get_default_config
(
cfg
,
data
,
kernel
,
strides
,
padding
,
out_dtype
,
layout
):
"""
Get default schedule config for the workload
"""
if
layout
!=
'NDHWC'
:
raise
ValueError
(
"Layout {} is not supported"
.
format
(
layout
))
static_data_shape
=
[]
for
dim
in
get_const_tuple
(
data
.
shape
):
if
isinstance
(
dim
,
tvm
.
expr
.
Var
):
static_data_shape
.
append
(
1
)
else
:
static_data_shape
.
append
(
dim
)
data
=
tvm
.
placeholder
(
static_data_shape
,
dtype
=
data
.
dtype
)
wkl
=
_get_conv3d_workload
(
data
,
kernel
,
strides
,
padding
,
out_dtype
,
layout
)
_fallback_schedule
(
cfg
,
wkl
)
def
_get_conv3d_workload
(
data
,
kernel
,
stride
,
padding
,
out_dtype
,
data_layout
=
'NCHW'
):
""" Get the workload structure. """
if
data_layout
==
'NCDHW'
:
_
,
CI
,
ID
,
IH
,
IW
=
get_const_tuple
(
data
.
shape
)
CIG
,
CO
,
KD
,
KH
,
KW
=
get_const_tuple
(
kernel
.
shape
)
elif
data_layout
==
'NDHWC'
:
_
,
ID
,
IH
,
IW
,
CI
=
get_const_tuple
(
data
.
shape
)
KD
,
KH
,
KW
,
CIG
,
CO
=
get_const_tuple
(
kernel
.
shape
)
else
:
raise
ValueError
(
"not support this layout {} yet"
.
format
(
data_layout
))
pad_front
,
pad_top
,
pad_left
,
pad_back
,
pad_down
,
pad_right
=
get_pad_tuple3d
(
padding
,
(
get_const_int
(
KD
),
get_const_int
(
KH
),
get_const_int
(
KW
)))
DPAD
=
pad_front
+
pad_back
HPAD
=
pad_top
+
pad_down
WPAD
=
pad_left
+
pad_right
GRPS
=
CI
//
CIG
if
isinstance
(
stride
,
(
tuple
,
list
)):
DSTR
,
HSTR
,
WSTR
=
stride
else
:
DSTR
,
HSTR
,
WSTR
=
stride
,
stride
,
stride
assert
(
data
.
dtype
==
kernel
.
dtype
)
or
(
data
.
dtype
==
'uint8'
and
kernel
.
dtype
==
'int8'
),
\
"Do not support inputs with different data types now. '
\
'{} vs. {}"
.
format
(
data
.
dtype
,
kernel
.
dtype
)
return
Workload3D
(
data
.
dtype
,
out_dtype
,
ID
,
IH
,
IW
,
CI
,
GRPS
,
CO
,
KD
,
KH
,
KW
,
DPAD
,
HPAD
,
WPAD
,
DSTR
,
HSTR
,
WSTR
)
def
_fallback_schedule
(
cfg
,
wkl
):
simd_width
=
get_fp32_len
()
DPAD
,
HPAD
,
WPAD
=
wkl
.
dpad
,
wkl
.
hpad
,
wkl
.
wpad
DSTR
,
HSTR
,
WSTR
=
wkl
.
dstride
,
wkl
.
hstride
,
wkl
.
wstride
out_width
=
(
wkl
.
width
+
2
*
WPAD
-
wkl
.
wkernel
)
//
WSTR
+
1
oc_bn
=
1
for
bn
in
range
(
simd_width
,
0
,
-
1
):
if
wkl
.
out_filter
%
bn
==
0
:
oc_bn
=
bn
break
ic_bn
=
1
for
bn
in
range
(
oc_bn
,
0
,
-
1
):
if
wkl
.
in_filter
%
bn
==
0
:
ic_bn
=
bn
break
reg_n
=
1
for
n
in
range
(
7
,
0
,
-
1
):
if
out_width
%
n
==
0
:
reg_n
=
n
break
cfg
[
"tile_ic"
]
=
SplitEntity
([
wkl
.
in_filter
//
ic_bn
,
ic_bn
])
cfg
[
"tile_oc"
]
=
SplitEntity
([
wkl
.
out_filter
//
oc_bn
,
oc_bn
])
cfg
[
"tile_ow"
]
=
SplitEntity
([
out_width
//
reg_n
,
reg_n
])
cfg
[
"unroll_kw"
]
=
OtherOptionEntity
(
False
)
def
_schedule_conv3d_ndhwc
(
s
,
cfg
,
data
,
data_pad
,
data_vec
,
kernel_vec
,
conv_out
,
output
,
last
):
# fetch schedule
ic_bn
,
oc_bn
,
reg_n
,
unroll_kw
=
(
cfg
[
"tile_ic"
]
.
size
[
-
1
],
cfg
[
"tile_oc"
]
.
size
[
-
1
],
cfg
[
"tile_ow"
]
.
size
[
-
1
],
cfg
[
"unroll_kw"
]
.
val
)
# get padding size
padding
=
infer_pad3d
(
data
,
data_pad
,
"NDHWC"
)
DPAD
,
HPAD
,
WPAD
=
padding
DOPAD
=
(
DPAD
!=
0
or
HPAD
!=
0
or
WPAD
!=
0
)
A
,
W
=
data
,
kernel_vec
A0
,
A1
=
data_pad
,
data_vec
# schedule data
if
DOPAD
:
s
[
A0
]
.
compute_inline
()
batch
,
ic_chunk
,
idd
,
ih
,
ic_block
,
iw
=
s
[
A1
]
.
op
.
axis
parallel_axis
=
s
[
A1
]
.
fuse
(
batch
,
ic_chunk
,
idd
,
ih
)
s
[
A1
]
.
parallel
(
parallel_axis
)
# schedule kernel pack
oc_chunk
,
ic_chunk
,
od
,
oh
,
ow
,
ic_block
,
oc_block
=
s
[
W
]
.
op
.
axis
s
[
W
]
.
reorder
(
oc_chunk
,
od
,
oh
,
ic_chunk
,
ow
,
ic_block
,
oc_block
)
if
oc_bn
>
1
:
s
[
W
]
.
vectorize
(
oc_block
)
parallel_axis
=
s
[
W
]
.
fuse
(
oc_chunk
,
od
,
oh
)
s
[
W
]
.
parallel
(
parallel_axis
)
# schedule conv
C
,
O0
,
O
=
conv_out
,
output
,
last
CC
=
s
.
cache_write
(
C
,
'global'
)
_
,
oc_chunk
,
od
,
oh
,
ow
,
oc_block
=
s
[
C
]
.
op
.
axis
ow_chunk
,
ow_block
=
s
[
C
]
.
split
(
ow
,
factor
=
reg_n
)
s
[
C
]
.
reorder
(
oc_chunk
,
od
,
oh
,
ow_chunk
,
ow_block
,
oc_block
)
s
[
C
]
.
fuse
(
oc_chunk
,
od
,
oh
)
s
[
C
]
.
vectorize
(
oc_block
)
s
[
CC
]
.
compute_at
(
s
[
C
],
ow_chunk
)
_
,
oc_chunk
,
od
,
oh
,
ow
,
oc_block
=
s
[
CC
]
.
op
.
axis
kd
,
kh
,
kw
,
ic
=
s
[
CC
]
.
op
.
reduce_axis
ow_chunk
,
ow_block
=
s
[
CC
]
.
split
(
ow
,
factor
=
reg_n
)
ic_chunk
,
ic_block
=
s
[
CC
]
.
split
(
ic
,
factor
=
ic_bn
)
if
unroll_kw
:
s
[
CC
]
.
reorder
(
oc_chunk
,
oh
,
ow_chunk
,
ic_chunk
,
kd
,
kh
,
ic_block
,
kw
,
ow_block
,
oc_block
)
s
[
CC
]
.
unroll
(
kw
)
else
:
s
[
CC
]
.
reorder
(
oc_chunk
,
oh
,
ow_chunk
,
ic_chunk
,
kd
,
kh
,
kw
,
ic_block
,
ow_block
,
oc_block
)
s
[
CC
]
.
fuse
(
oc_chunk
,
od
,
oh
)
s
[
CC
]
.
vectorize
(
oc_block
)
s
[
CC
]
.
unroll
(
ow_block
)
if
O0
!=
O
:
s
[
O0
]
.
compute_inline
()
# unpacking
batch
,
od
,
oh
,
ow
,
oc
=
s
[
O
]
.
op
.
axis
ow_chunk
,
ow_block
=
s
[
O
]
.
split
(
ow
,
factor
=
reg_n
)
oc_chunk
,
oc_block
=
s
[
O
]
.
split
(
oc
,
factor
=
oc_bn
)
s
[
O
]
.
reorder
(
oc_chunk
,
od
,
oh
,
ow_chunk
,
ow_block
,
oc_block
)
parallel_axis
=
s
[
O
]
.
fuse
(
batch
,
oc_chunk
,
od
,
oh
)
s
[
C
]
.
compute_at
(
s
[
O
],
parallel_axis
)
s
[
O
]
.
vectorize
(
oc_block
)
s
[
O
]
.
parallel
(
parallel_axis
)
return
s
topi/tests/python/test_topi_conv3d_ndhwc.py
View file @
8d945872
...
...
@@ -36,7 +36,6 @@ def verify_conv3d_ndhwc(batch, in_channel, in_size, num_filter, kernel, stride,
A
=
tvm
.
placeholder
((
batch
,
in_depth
,
in_height
,
in_width
,
in_channel
),
name
=
'A'
)
W
=
tvm
.
placeholder
((
kernel_depth
,
kernel_height
,
kernel_width
,
in_channel
,
num_filter
),
name
=
'W'
)
B
=
topi
.
nn
.
conv3d_ndhwc
(
A
,
W
,
stride
,
padding
,
dilation
)
a_shape
=
get_const_tuple
(
A
.
shape
)
w_shape
=
get_const_tuple
(
W
.
shape
)
...
...
@@ -57,6 +56,7 @@ def verify_conv3d_ndhwc(batch, in_channel, in_size, num_filter, kernel, stride,
return
print
(
"Running on target:
%
s"
%
device
)
with
tvm
.
target
.
create
(
device
):
B
=
topi
.
nn
.
conv3d
(
A
,
W
,
stride
,
padding
,
dilation
,
layout
=
"NDHWC"
)
s
=
topi
.
generic
.
schedule_conv3d_ndhwc
([
B
])
ctx
=
tvm
.
context
(
device
,
0
)
a
=
tvm
.
nd
.
array
(
a_np
,
ctx
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment