Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
866d458c
Commit
866d458c
authored
Oct 30, 2018
by
Lianmin Zheng
Committed by
Yizhi Liu
Oct 30, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TOPI][AUTOTVM] Improve style (#2034)
* [TOPI] Improve the style of using autotvm * fix
parent
bc48811f
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
150 additions
and
157 deletions
+150
-157
topi/python/topi/arm_cpu/conv2d.py
+97
-102
topi/python/topi/mali/conv2d.py
+49
-40
topi/python/topi/nn/conv2d.py
+0
-11
topi/python/topi/x86/conv2d.py
+4
-4
No files found.
topi/python/topi/arm_cpu/conv2d.py
View file @
866d458c
...
...
@@ -12,34 +12,40 @@ from ..util import traverse_inline, get_const_tuple, const_matrix
from
..nn
import
pad
,
conv2d
,
conv2d_alter_layout
,
conv2d_winograd_without_weight_transform
from
..nn.util
import
get_const_int
,
get_pad_tuple
def
_conv_arg_to_workload
(
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
):
"""convert argument to workload"""
if
len
(
kernel
.
shape
)
==
4
:
raw_kernel
=
kernel
else
:
# the input kernel is transformed by alter_op_layout
shape
=
get_const_tuple
(
kernel
.
shape
)
raw_kernel
=
tvm
.
placeholder
((
shape
[
0
]
*
shape
[
4
],
shape
[
1
],
shape
[
2
],
shape
[
3
]),
dtype
=
kernel
.
dtype
)
return
(
'conv2d'
,
)
+
autotvm
.
task
.
args_to_workload
(
[
data
,
raw_kernel
,
strides
,
padding
,
layout
,
out_dtype
])
@conv2d.register
(
'arm_cpu'
)
@autotvm.task.dispatcher
def
conv2d_arm_cpu
(
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
):
"""TOPI compute callback. Mark this function as a dispatcher, so
this template can assign config according to workload
@autotvm.register_topi_compute
(
conv2d
,
'arm_cpu'
,
[
'direct'
])
def
conv2d_arm_cpu
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
):
"""TOPI compute callback for conv2d
Parameters
----------
cfg: ConfigEntity
The config for this template
data : tvm.Tensor
4-D with shape [batch, in_channel, in_height, in_width]
kernel : tvm.Tensor
4-D with shape [num_filter, in_channel, filter_height, filter_width] or
pre-packed 5-D with shape [num_filter_chunk, in_channel, filter_height,
filter_width, num_filter_block]
strides : list of two ints
[stride_height, stride_width]
padding : list of two ints
[pad_height, pad_width]
layout : str
layout of data
out_dtype: str
The output type. This is used for mixed precision.
Returns
-------
workload: Tuple
Dispatcher will use this workload to query corresponding config.
Then use cfg.template_key to call a registered template.
output : tvm.Tensor
4-D with shape [batch, out_channel, out_height, out_width]
"""
return
_conv_arg_to_workload
(
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
)
@conv2d_arm_cpu.register
([
'direct'
])
def
decl_spatial_pack
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
):
"""spatial packing template"""
return
_decl_spatial_pack
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
num_tile
=
2
)
@autotvm.register_topi_schedule
(
schedule_conv2d_nchw
,
'arm_cpu'
,
[
'direct'
,
'winograd'
])
...
...
@@ -93,8 +99,6 @@ def schedule_conv2d_nchw_arm_cpu(cfg, outs):
def
_decl_spatial_pack
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
num_tile
):
assert
layout
==
"NCHW"
,
"Only support NCHW"
# create workload according to raw arguments
wkl
=
_conv_arg_to_workload
(
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
)
out_dtype
=
out_dtype
or
data
.
dtype
N
,
CI
,
IH
,
IW
=
get_const_tuple
(
data
.
shape
)
if
len
(
kernel
.
shape
)
==
4
:
...
...
@@ -177,8 +181,7 @@ def _decl_spatial_pack(cfg, data, kernel, strides, padding, layout, out_dtype, n
output
=
tvm
.
compute
(
oshape
,
lambda
n
,
co
,
h
,
w
:
conv
[
n
][
co
//
VC
][
h
//
VH
][
w
//
VW
][
h
%
VH
][
w
%
VW
][
co
%
VC
],
name
=
'output_unpack'
,
tag
=
'spatial_conv2d_output'
,
attrs
=
{
'workload'
:
wkl
})
name
=
'output_unpack'
,
tag
=
'spatial_conv2d_output'
)
return
output
def
_schedule_spatial_pack
(
cfg
,
s
,
data_vec
,
kernel_vec
,
...
...
@@ -238,16 +241,13 @@ def _schedule_spatial_pack(cfg, s, data_vec, kernel_vec,
return
s
@conv2d_arm_cpu.register
(
'winograd'
)
def
decl_winograd
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
):
@autotvm.register_topi_compute
(
conv2d
,
'arm_cpu'
,
[
'winograd'
])
def
conv2d_arm_cpu_winograd
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
):
""" TOPI compute callback. Use winograd template """
tile_size
=
4
return
_decl_winograd
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
)
def
_decl_winograd
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
):
# create workload according to raw arguments
wkl
=
_winograd_conv_arg_to_workload
(
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
)
N
,
CI
,
IH
,
IW
=
get_const_tuple
(
data
.
shape
)
if
len
(
kernel
.
shape
)
==
4
:
pre_computed
=
False
...
...
@@ -368,8 +368,7 @@ def _decl_winograd(cfg, data, kernel, strides, padding, layout, out_dtype, tile_
# unpack output
output
=
tvm
.
compute
((
N
,
K
,
H
,
W
),
lambda
n
,
k
,
h
,
w
:
Y
[
k
][
n
*
nH
*
nW
+
(
h
//
m
)
*
nW
+
w
//
m
][
h
%
m
][
w
%
m
],
name
=
'output'
,
tag
=
'winograd_conv2d_output'
,
attrs
=
{
'workload'
:
wkl
})
name
=
'output'
,
tag
=
'winograd_conv2d_output'
)
# we have to manually assign effective GFLOP for winograd
cfg
.
add_flop
(
2
*
N
*
K
*
H
*
W
*
KH
*
KW
*
C
)
...
...
@@ -458,36 +457,11 @@ def _schedule_winograd(cfg, s, output, last):
s
[
output
]
.
compute_inline
()
def
_winograd_conv_arg_to_workload
(
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
):
"""convert argument to workload"""
K
=
3
shape
=
get_const_tuple
(
kernel
.
shape
)
alpha
=
tile_size
+
K
-
1
if
len
(
kernel
.
shape
)
==
4
:
assert
shape
[
2
:]
==
(
K
,
K
)
CO
,
CI
=
shape
[:
2
]
else
:
assert
shape
[:
2
]
==
(
alpha
,
alpha
)
CO
,
CI
,
VCO
=
shape
[
2
:]
CO
*=
VCO
raw_kernel
=
tvm
.
placeholder
((
CO
,
CI
,
K
,
K
),
dtype
=
kernel
.
dtype
)
return
(
'conv2d'
,
)
+
autotvm
.
task
.
args_to_workload
(
[
data
,
raw_kernel
,
strides
,
padding
,
layout
,
out_dtype
])
##### REGISTER TOPI COMPUTE / SCHEDULE FOR WINOGRAD WITH WEIGHT TRANSFORM #####
@conv2d_winograd_without_weight_transform.register
([
'arm_cpu'
])
@autotvm.task.dispatcher
def
winograd_ww_config_dispatcher_
(
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
):
return
_winograd_conv_arg_to_workload
(
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
)
@winograd_ww_config_dispatcher_.register
([
'winograd'
])
def
decl_winograd_ww
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
):
return
_decl_winograd
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
)
@autotvm.register_topi_compute
(
conv2d_winograd_without_weight_transform
,
'arm_cpu'
,
[
'winograd'
])
def
conv2d_winograd_ww
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
):
"""TOPI compute callback"""
return
_decl_winograd
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
)
@autotvm.register_topi_schedule
(
schedule_conv2d_winograd_without_weight_transform
,
...
...
@@ -514,8 +488,7 @@ def _alter_conv2d_layout_arm(attrs, inputs, tinfos):
new_attrs
=
{
k
:
attrs
[
k
]
for
k
in
attrs
.
keys
()}
assert
attrs
.
get_int_tuple
(
"dilation"
)
==
(
1
,
1
),
"Does not support dilation "
\
"when alter_op_layout is enabled"
dilation
=
attrs
.
get_int_tuple
(
"dilation"
)
strides
=
attrs
.
get_int_tuple
(
"strides"
)
padding
=
attrs
.
get_int_tuple
(
"padding"
)
groups
=
attrs
.
get_int
(
'groups'
)
...
...
@@ -523,38 +496,60 @@ def _alter_conv2d_layout_arm(attrs, inputs, tinfos):
out_dtype
=
attrs
[
"out_dtype"
]
out_dtype
=
tinfos
[
0
]
.
dtype
if
out_dtype
==
"same"
else
out_dtype
if
groups
==
1
:
# query config of this workload
workload
=
_conv_arg_to_workload
(
tinfos
[
0
],
tinfos
[
1
],
strides
,
padding
,
layout
,
out_dtype
)
cfg
=
autotvm
.
DispatchContext
.
current
.
query
(
tvm
.
target
.
current_target
(),
workload
)
if
cfg
.
is_fallback
:
# if is fallback, clear query cache and return None
autotvm
.
task
.
clear_fallback_cache
(
tvm
.
target
.
current_target
(),
workload
)
return
None
if
cfg
.
template_key
==
'direct'
:
# packing weight tensor
new_attrs
[
'kernel_layout'
]
=
'OIHW
%
do'
%
(
cfg
[
'tile_co'
]
.
size
[
-
1
])
return
sym
.
conv2d
(
*
copy_inputs
,
**
new_attrs
)
else
:
# pre-compute weight transformation in winograd
if
"-device=arm_cpu"
in
tvm
.
target
.
current_target
()
.
options
:
tile_size
=
4
VC
=
cfg
[
'tile_k'
]
.
size
[
-
1
]
else
:
from
..mali.conv2d
import
_pick_tile_size
tile_size
=
_pick_tile_size
(
tinfos
[
0
],
tinfos
[
1
])
VC
=
cfg
[
'tile_bna'
]
.
val
weight
=
sym
.
contrib
.
conv2d_winograd_weight_transform
(
copy_inputs
[
1
],
tile_size
=
tile_size
)
CO
,
CI
,
KH
,
KW
=
get_const_tuple
(
tinfos
[
1
]
.
shape
)
weight
=
sym
.
reshape
(
weight
,
shape
=
(
KH
+
tile_size
-
1
,
KW
+
tile_size
-
1
,
CO
//
VC
,
VC
,
CI
))
weight
=
sym
.
transpose
(
weight
,
axes
=
[
0
,
1
,
2
,
4
,
3
])
copy_inputs
[
1
]
=
weight
new_attrs
[
'tile_size'
]
=
tile_size
return
sym
.
contrib
.
conv2d_winograd_without_weight_transform
(
*
copy_inputs
,
**
new_attrs
)
# do nothing for depthwise convolution
return
None
if
layout
!=
'NCHW'
or
groups
!=
1
or
dilation
!=
(
1
,
1
):
return
None
data
,
kernel
=
tinfos
[
0
:
2
]
N
,
CI
,
H
,
W
=
get_const_tuple
(
data
.
shape
)
CO
,
_
,
KH
,
KW
=
get_const_tuple
(
kernel
.
shape
)
# query config of this workload
workload
=
autotvm
.
task
.
args_to_workload
(
[
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
],
conv2d
)
target
=
tvm
.
target
.
current_target
()
dispatch_ctx
=
autotvm
.
DispatchContext
.
current
cfg
=
dispatch_ctx
.
query
(
target
,
workload
)
if
cfg
.
is_fallback
:
# if is fallback, clear query cache and return None
autotvm
.
task
.
clear_fallback_cache
(
target
,
workload
)
return
None
if
cfg
.
template_key
==
'direct'
:
# pack weight tensor
VC
=
cfg
[
'tile_co'
]
.
size
[
-
1
]
new_attrs
[
'kernel_layout'
]
=
'OIHW
%
do'
%
VC
# Store the same config for the altered operator (workload)
new_data
=
data
new_kernel
=
tvm
.
placeholder
((
CO
//
VC
,
CI
,
KH
,
KW
,
VC
),
dtype
=
kernel
.
dtype
)
new_workload
=
autotvm
.
task
.
args_to_workload
(
[
new_data
,
new_kernel
,
strides
,
padding
,
'NCHW'
,
out_dtype
],
conv2d
)
dispatch_ctx
.
update
(
target
,
new_workload
,
cfg
)
return
sym
.
conv2d
(
*
copy_inputs
,
**
new_attrs
)
else
:
# pre-compute weight transformation in winograd
if
"-device=arm_cpu"
in
target
.
options
:
tile_size
=
4
VC
=
cfg
[
'tile_k'
]
.
size
[
-
1
]
else
:
from
..mali.conv2d
import
_pick_tile_size
tile_size
=
_pick_tile_size
(
tinfos
[
0
],
tinfos
[
1
])
VC
=
cfg
[
'tile_bna'
]
.
val
weight
=
sym
.
contrib
.
conv2d_winograd_weight_transform
(
copy_inputs
[
1
],
tile_size
=
tile_size
)
weight
=
sym
.
reshape
(
weight
,
shape
=
(
KH
+
tile_size
-
1
,
KW
+
tile_size
-
1
,
CO
//
VC
,
VC
,
CI
))
weight
=
sym
.
transpose
(
weight
,
axes
=
[
0
,
1
,
2
,
4
,
3
])
copy_inputs
[
1
]
=
weight
new_attrs
[
'tile_size'
]
=
tile_size
# Store the same config for the altered operator (workload)
new_data
=
data
new_weight
=
tvm
.
placeholder
((
KH
+
tile_size
-
1
,
KH
+
tile_size
-
1
,
CO
//
VC
,
CI
,
VC
),
kernel
.
dtype
)
new_workload
=
autotvm
.
task
.
args_to_workload
(
[
new_data
,
new_weight
,
strides
,
padding
,
new_attrs
[
'layout'
],
out_dtype
,
tile_size
],
conv2d_winograd_without_weight_transform
)
dispatch_ctx
.
update
(
target
,
new_workload
,
cfg
)
return
sym
.
contrib
.
conv2d_winograd_without_weight_transform
(
*
copy_inputs
,
**
new_attrs
)
topi/python/topi/mali/conv2d.py
View file @
866d458c
...
...
@@ -12,27 +12,43 @@ from ..nn import conv2d, conv2d_winograd_without_weight_transform, \
get_pad_tuple
,
pad
,
conv2d_alter_layout
# reuse some compute declarations from ARM CPU
from
..arm_cpu.conv2d
import
_conv_arg_to_workload
,
_decl_spatial_pack
,
\
_winograd_conv_arg_to_workload
,
_alter_conv2d_layout_arm
from
..arm_cpu.conv2d
import
_decl_spatial_pack
,
_alter_conv2d_layout_arm
@conv2d.register
(
'mali'
)
@autotvm.task.dispatcher
def
conv2d_mali
(
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
):
"""TOPI compute callback. Mark this function as a dispatcher, so
this template can assign config according to workload
@autotvm.register_topi_compute
(
conv2d
,
'mali'
,
[
'direct'
])
def
conv2d_mali
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
):
"""TOPI compute callback for conv2d
Parameters
----------
cfg: ConfigEntity
The config for this template
data : tvm.Tensor
4-D with shape [batch, in_channel, in_height, in_width]
kernel : tvm.Tensor
4-D with shape [num_filter, in_channel, filter_height, filter_width] or
pre-packed 5-D with shape [num_filter_chunk, in_channel, filter_height,
filter_width, num_filter_block]
strides : list of two ints
[stride_height, stride_width]
padding : list of two ints
[pad_height, pad_width]
layout : str
layout of data
out_dtype: str
The output type. This is used for mixed precision.
Returns
-------
workload: Tuple
Dispatcher will use this workload to query corresponding config.
Then use cfg.template_key to call a registered template.
output : tvm.Tensor
4-D with shape [batch, out_channel, out_height, out_width]
"""
return
_conv_arg_to_workload
(
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
)
@conv2d_mali.register
([
'direct'
])
def
decl_spatial_pack
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
):
"""spatial packing template"""
return
_decl_spatial_pack
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
num_tile
=
3
)
@autotvm.register_topi_schedule
(
schedule_conv2d_nchw
,
'mali'
,
[
'direct'
,
'winograd'
])
...
...
@@ -158,8 +174,8 @@ def _pick_tile_size(data, kernel):
else
:
return
2
@
conv2d_mali.register
(
'winograd'
)
def
decl
_winograd
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
):
@
autotvm.register_topi_compute
(
conv2d
,
'mali'
,
[
'winograd'
]
)
def
conv2d_mali
_winograd
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
):
tile_size
=
_pick_tile_size
(
data
,
kernel
)
return
_decl_winograd
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
)
...
...
@@ -305,9 +321,7 @@ def _decl_winograd(cfg, data, kernel, strides, padding, layout, out_dtype, tile_
# thw following term is used to make the padding effective,
# otherwise the padding will be eliminated by bound inference
+
tvm
.
const
(
0
,
out_dtype
)
*
M
[
alpha
-
1
][
alpha
-
1
][
CO
-
1
][
P_round
-
1
],
name
=
'output'
,
tag
=
'winograd_conv2d_output'
,
attrs
=
{
'workload'
:
_winograd_conv_arg_to_workload
(
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
)})
name
=
'output'
,
tag
=
'winograd_conv2d_output'
)
# we have to manually assign effective GFLOP for winograd
cfg
.
add_flop
(
2
*
N
*
CO
*
H
*
W
*
KH
*
KW
*
CI
)
...
...
@@ -410,29 +424,15 @@ def _schedule_winograd(cfg, s, op):
s
[
Y
]
.
compute_at
(
s
[
output
],
tt
)
@conv2d_alter_layout.register
([
"mali"
])
def
_alter_conv2d_layout
(
attrs
,
inputs
,
tinfos
):
try
:
return
_alter_conv2d_layout_arm
(
attrs
,
inputs
,
tinfos
)
except
KeyError
:
# to filter out fallback opencl templates
return
None
##### REGISTER TOPI COMPUTE / SCHEDULE FOR WINOGRAD WITH WEIGHT TRANSFORM #####
@conv2d_winograd_without_weight_transform.register
([
'mali'
])
@autotvm.task.dispatcher
def
winograd_ww_config_dispatcher_
(
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
):
return
_winograd_conv_arg_to_workload
(
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
)
@winograd_ww_config_dispatcher_.register
([
'winograd'
])
def
decl_winograd_ww
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
):
return
_decl_winograd
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
)
@autotvm.register_topi_compute
(
conv2d_winograd_without_weight_transform
,
'mali'
,
[
'winograd'
])
def
conv2d_winograd_ww
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
):
"""TOPI compute callback"""
return
_decl_winograd
(
cfg
,
data
,
kernel
,
strides
,
padding
,
layout
,
out_dtype
,
tile_size
)
@autotvm.
task.
register_topi_schedule
(
schedule_conv2d_winograd_without_weight_transform
,
'mali'
,
[
'winograd'
])
@autotvm.register_topi_schedule
(
schedule_conv2d_winograd_without_weight_transform
,
'mali'
,
[
'winograd'
])
def
schedule_conv2d_winograd_without_weight_transform_
(
cfg
,
outs
):
"""TOPI schedule callback"""
s
=
tvm
.
create_schedule
([
x
.
op
for
x
in
outs
])
...
...
@@ -445,6 +445,15 @@ def schedule_conv2d_winograd_without_weight_transform_(cfg, outs):
return
s
##### REGISTER ALTER OP LAYOUT #####
@conv2d_alter_layout.register
([
"mali"
])
def
_alter_conv2d_layout
(
attrs
,
inputs
,
tinfos
):
try
:
return
_alter_conv2d_layout_arm
(
attrs
,
inputs
,
tinfos
)
except
KeyError
:
# to filter out fallback opencl templates
return
None
##### SCHECULE UTILITIES #####
def
tile_and_bind
(
s
,
tensor
,
y
,
x
,
y_factor
,
x_factor
=
None
):
""" tile and bind to GPU threads """
...
...
topi/python/topi/nn/conv2d.py
View file @
866d458c
...
...
@@ -85,17 +85,6 @@ def _get_workload(data, kernel, stride, padding, out_dtype):
return
Workload
(
data
.
dtype
,
out_dtype
,
IH
,
IW
,
CI
,
CO
,
KH
,
KW
,
HPAD
,
WPAD
,
HSTR
,
WSTR
)
@tvm.target.generic_func
def
_get_schedule
(
wkl
):
# pylint: disable=unreachable
""" Get the platform specific schedule. """
target
=
tvm
.
target
.
current_target
()
raise
RuntimeError
(
"No schedule for current target:{}"
.
format
(
target
))
# This return has no use, merely to supress pylint warning
return
wkl
def
conv2d_nchw
(
Input
,
Filter
,
stride
,
padding
,
out_dtype
=
None
):
"""Convolution operator in NCHW layout.
...
...
topi/python/topi/x86/conv2d.py
View file @
866d458c
...
...
@@ -3,7 +3,7 @@
import
tvm
from
tvm
import
autotvm
from
tvm.autotvm.task.nnvm_integration
import
deserialize_args
from
tvm.autotvm.task
import
register
,
get_config
from
tvm.autotvm.task
import
get_config
from
..
import
generic
,
tag
from
..
import
nn
from
..util
import
get_const_tuple
...
...
@@ -145,7 +145,7 @@ def _declaration_conv_impl(cfg, data, kernel, strides, padding, layout, out_dtyp
return
unpack
@autotvm.
task.
register_topi_schedule
(
generic
.
schedule_conv2d_nchw
,
'cpu'
,
[
'direct'
])
@autotvm.register_topi_schedule
(
generic
.
schedule_conv2d_nchw
,
'cpu'
,
[
'direct'
])
def
schedule_conv2d
(
cfg
,
outs
):
"""Create schedule for tensors"""
s
=
tvm
.
create_schedule
([
x
.
op
for
x
in
outs
])
...
...
@@ -248,7 +248,7 @@ def schedule_conv2d_nhwc(outs):
# We define schedule template in this function instead of
# declaration function since actual input arguments need
# to be altered by the schedule selected.
@register
(
"topi_x86_conv2d_NCHWc"
)
@
autotvm.task.
register
(
"topi_x86_conv2d_NCHWc"
)
def
_topi_nn_conv2d_NCHWc
(
*
args
,
**
kwargs
):
assert
not
kwargs
,
"Do not support kwargs in template function call"
data
,
kernel
,
strides
,
padding
,
origin_layout
,
dtype
=
deserialize_args
(
args
)
...
...
@@ -311,7 +311,7 @@ def _alter_conv2d_layout(attrs, inputs, tinfo):
# (oc, ic, h, w) -> (OC, IC, h, w, ic, oc)
new_attrs
[
'kernel_layout'
]
=
'OIHW
%
di
%
do'
%
(
ic_bn
,
oc_bn
)
# Store
altered operator's config
# Store
the same config for the altered operator (workload)
new_data
=
tvm
.
placeholder
((
batch_size
,
in_channel
//
ic_bn
,
height
,
width
,
ic_bn
),
dtype
=
data
.
dtype
)
new_kernel
=
tvm
.
placeholder
((
out_channel
//
oc_bn
,
in_channel
//
ic_bn
,
kh
,
kw
,
ic_bn
,
oc_bn
),
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment