Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
83930a3b
Unverified
Commit
83930a3b
authored
Apr 25, 2020
by
Samuel
Committed by
GitHub
Apr 25, 2020
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[PYTORCH]Rsub, Embedded, OneHot ops support (#5434)
parent
52bf1b35
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
100 additions
and
0 deletions
+100
-0
python/tvm/relay/frontend/pytorch.py
+47
-0
tests/python/frontend/pytorch/test_forward.py
+53
-0
No files found.
python/tvm/relay/frontend/pytorch.py
View file @
83930a3b
...
...
@@ -1477,6 +1477,50 @@ def _tensor_array_stack(prelude):
return
_impl
def
_rsub
():
def
_impl
(
inputs
,
input_types
):
# TODO: Figure out a better way to get typing to work for tensor + scalar
type0
=
input_types
[
0
]
if
isinstance
(
inputs
[
1
],
_expr
.
Expr
):
type0
=
input_types
[
1
]
type1
=
input_types
[
1
]
if
isinstance
(
inputs
[
0
],
_expr
.
Expr
):
type1
=
input_types
[
0
]
data1
=
_convert_elemwise_input
(
inputs
[
0
],
type0
)
data0
=
_convert_elemwise_input
(
inputs
[
1
],
type1
)
alpha
=
_expr
.
const
(
float
(
inputs
[
2
]))
return
get_relay_op
(
"subtract"
)(
data0
,
alpha
*
data1
)
return
_impl
def
_embedding
():
def
_impl
(
inputs
,
input_types
):
weight
=
inputs
[
0
]
indices
=
inputs
[
1
]
return
_op
.
take
(
weight
,
indices
.
astype
(
'int32'
),
axis
=
0
)
return
_impl
def
_one_hot
():
def
_impl
(
inputs
,
input_types
):
indices
=
inputs
[
0
]
.
astype
(
'int32'
)
num_classes
=
inputs
[
1
]
if
num_classes
==
-
1
:
msg
=
"Inferring the number of classes is not yet supported."
raise
NotImplementedError
(
msg
)
dtype
=
'int32'
on_value
=
tvm
.
relay
.
const
(
1.0
,
dtype
)
off_value
=
tvm
.
relay
.
const
(
0.0
,
dtype
)
return
_op
.
one_hot
(
indices
,
on_value
,
off_value
,
num_classes
,
-
1
,
dtype
)
return
_impl
# Helper functions for operator implementation
def
_convert_dtype_value
(
val
):
convert_torch_dtype_map
=
{
7
:
"torch.float64"
,
...
...
@@ -1690,6 +1734,9 @@ def _get_convert_map(prelude):
"aten::Float"
:
_Float
(),
"aten::adaptive_avg_pool3d"
:
_adaptive_avg_pool_3d
(),
"aten::adaptive_max_pool3d"
:
_adaptive_max_pool_3d
(),
"aten::rsub"
:
_rsub
(),
"aten::embedding"
:
_embedding
(),
"aten::one_hot"
:
_one_hot
(),
"aten::mm"
:
_matmul
(),
"relay::tensor_array_stack"
:
_tensor_array_stack
(
prelude
),
"aten::add"
:
_add
(
prelude
),
...
...
tests/python/frontend/pytorch/test_forward.py
View file @
83930a3b
...
...
@@ -1463,6 +1463,56 @@ def test_forward_variance():
verify_model
(
Variance5
()
.
float
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_rsub
():
torch
.
set_grad_enabled
(
False
)
class
Rsub1
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
rsub
(
args
[
0
],
args
[
1
])
class
Rsub2
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
rsub
(
args
[
0
],
args
[
1
],
alpha
=
0.5
)
d1
=
torch
.
rand
([
1
,
3
])
.
float
()
d2
=
torch
.
rand
([
1
,
3
])
.
float
()
d3
=
torch
.
rand
([
1
,
3
])
.
int
()
verify_model
(
Rsub1
()
.
float
()
.
eval
(),
input_data
=
[
d1
,
d2
])
verify_model
(
Rsub1
()
.
float
()
.
eval
(),
input_data
=
[
d1
,
d3
])
verify_model
(
Rsub2
()
.
float
()
.
eval
(),
input_data
=
[
d1
,
d2
])
verify_model
(
Rsub2
()
.
float
()
.
eval
(),
input_data
=
[
d1
,
d3
])
def
test_forward_embedding
():
torch
.
set_grad_enabled
(
False
)
input_data
=
torch
.
randint
(
0
,
10
,
[
2
,
4
])
.
long
()
verify_model
(
torch
.
nn
.
Embedding
(
10
,
3
)
.
float
()
.
eval
(),
input_data
=
input_data
)
input_data
=
torch
.
randint
(
0
,
4
,
[
2
,
3
,
4
])
.
long
()
verify_model
(
torch
.
nn
.
Embedding
(
4
,
5
,
sparse
=
False
)
.
float
()
.
eval
(),
input_data
=
input_data
)
input_data
=
torch
.
randint
(
0
,
4
,
[
2
,
3
,
4
])
.
long
()
verify_model
(
torch
.
nn
.
Embedding
(
4
,
5
,
sparse
=
True
)
.
float
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_onehot
():
torch
.
set_grad_enabled
(
False
)
class
OneHot1
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
nn
.
functional
.
one_hot
(
args
[
0
],
num_classes
=
3
)
class
OneHot2
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
nn
.
functional
.
one_hot
(
args
[
0
],
num_classes
=
5
)
input_data
=
torch
.
arange
(
0
,
5
)
%
3
verify_model
(
OneHot1
()
.
float
()
.
eval
(),
input_data
=
input_data
)
input_data
=
torch
.
arange
(
0
,
5
)
%
4
verify_model
(
OneHot2
()
.
float
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_isfinite
():
torch
.
set_grad_enabled
(
False
)
...
...
@@ -1984,6 +2034,9 @@ if __name__ == "__main__":
test_forward_add
()
test_forward_subtract
()
test_forward_multiply
()
test_forward_rsub
()
test_forward_onehot
()
test_forward_embedding
()
test_forward_reshape
()
test_forward_reciprocal
()
test_forward_repeat
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment