Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
7ea06e6e
Commit
7ea06e6e
authored
Aug 08, 2018
by
Siju
Committed by
Tianqi Chen
Aug 08, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[ONNX]onnx gather bug fix (#1543)
parent
60da4705
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
104 additions
and
92 deletions
+104
-92
nnvm/python/nnvm/frontend/onnx.py
+3
-7
nnvm/tests/python/frontend/onnx/test_forward.py
+101
-85
No files found.
nnvm/python/nnvm/frontend/onnx.py
View file @
7ea06e6e
...
...
@@ -489,15 +489,11 @@ class Slice(OnnxOpConverter):
class
Gather
(
OnnxOpConverter
):
""" Operator converter for Gather.
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
axis
=
attr
[
'axis'
]
indices
=
np
.
array
(
attr
[
'indices'
],
dtype
=
'int32'
)
name
=
'gather_indices'
gather_indices
=
_sym
.
Variable
(
name
=
name
,
init
=
indices
)
params
[
name
]
=
indices
return
_sym
.
take
(
inputs
[
0
],
gather_indices
,
axis
=
axis
)
axis
=
attr
.
get
(
'axis'
,
0
)
return
AttrCvt
(
op_name
=
'take'
,
extras
=
{
'axis'
:
axis
})(
inputs
,
attr
)
class
LRN
(
OnnxOpConverter
):
""" Operator converter for Local Response Normalization.
...
...
nnvm/tests/python/frontend/onnx/test_forward.py
View file @
7ea06e6e
...
...
@@ -8,21 +8,50 @@ import onnx
from
model_zoo
import
super_resolution
,
squeezenet1_1
,
lenet
,
resnet18_1_0
from
onnx
import
helper
,
TensorProto
def
get_tvm_output
(
model
,
x
,
target
,
ctx
,
out_shape
,
dtype
=
'float32'
):
new_sym
,
params
=
nnvm
.
frontend
.
from_onnx
(
model
)
input_name
=
model
.
graph
.
input
[
0
]
.
name
shape_dict
=
{
input_name
:
x
.
shape
}
dtype_dict
=
{
input_name
:
dtype
}
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
new_sym
,
target
,
shape_dict
,
dtype_dict
,
params
=
params
)
def
get_tvm_output
(
graph_def
,
input_data
,
target
,
ctx
,
output_shape
,
output_dtype
=
'float32'
):
""" Generic function to execute and get tvm output"""
sym
,
params
=
nnvm
.
frontend
.
from_onnx
(
graph_def
)
target
=
'llvm'
if
isinstance
(
input_data
,
list
):
input_names
=
{}
shape_dict
=
{}
dtype_dict
=
{}
for
i
,
_
in
enumerate
(
input_data
):
input_names
[
i
]
=
graph_def
.
graph
.
input
[
i
]
.
name
shape_dict
[
input_names
[
i
]]
=
input_data
[
i
]
.
shape
dtype_dict
[
input_names
[
i
]]
=
input_data
[
i
]
.
dtype
else
:
input_names
=
graph_def
.
graph
.
input
[
0
]
.
name
shape_dict
=
{
input_names
:
input_data
.
shape
}
dtype_dict
=
{
input_names
:
input_data
.
dtype
}
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
sym
,
target
,
shape_dict
,
dtype
=
dtype_dict
,
params
=
params
)
ctx
=
tvm
.
cpu
(
0
)
from
tvm.contrib
import
graph_runtime
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
# set inputs
m
.
set_input
(
input_name
,
tvm
.
nd
.
array
(
x
.
astype
(
dtype
)))
if
isinstance
(
input_data
,
list
):
for
i
,
e
in
enumerate
(
input_names
):
m
.
set_input
(
input_names
[
i
],
tvm
.
nd
.
array
(
input_data
[
i
]
.
astype
(
input_data
[
i
]
.
dtype
)))
else
:
m
.
set_input
(
input_names
,
tvm
.
nd
.
array
(
input_data
.
astype
(
input_data
.
dtype
)))
m
.
set_input
(
**
params
)
# execute
m
.
run
()
# get outputs
out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
(
out_shape
,
dtype
))
return
out
.
asnumpy
()
if
isinstance
(
output_shape
,
list
)
and
isinstance
(
output_dtype
,
list
):
tvm_output_list
=
[]
for
i
,
s
in
enumerate
(
output_shape
):
tvm_output
=
m
.
get_output
(
i
,
tvm
.
nd
.
empty
((
s
),
output_dtype
[
i
]))
tvm_output_list
.
append
(
tvm_output
.
asnumpy
())
return
tvm_output_list
else
:
tvm_output
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
((
output_shape
),
output_dtype
))
return
tvm_output
.
asnumpy
()
def
get_caffe2_output
(
model
,
x
,
dtype
=
'float32'
):
import
caffe2.python.onnx.backend
...
...
@@ -70,13 +99,15 @@ def test_reshape():
graph
=
helper
.
make_graph
([
ref_node
,
reshape_node
],
"reshape_test"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
ref_shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
ref_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'reshape_test'
)
for
target
,
ctx
in
ctx_list
():
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
'int32'
)
tvm_out
=
get_tvm_output
(
model
,
x
,
target
,
ctx
,
ref_shape
,
'float32'
)
np
.
testing
.
assert_allclose
(
ref_shape
,
tvm_out
.
shape
)
...
...
@@ -98,13 +129,15 @@ def test_reshape_like():
graph
=
helper
.
make_graph
([
ref_node
,
copy_node
,
reshape_node
],
"reshape_like_test"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
ref_shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
ref_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'reshape_like_test'
)
for
target
,
ctx
in
ctx_list
():
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
'float32'
)
tvm_out
=
get_tvm_output
(
model
,
x
,
target
,
ctx
,
ref_shape
,
'float32'
)
np
.
testing
.
assert_allclose
(
ref_shape
,
tvm_out
.
shape
)
...
...
@@ -122,31 +155,18 @@ def _test_power_iteration(x_shape, y_shape):
graph
=
helper
.
make_graph
([
res
],
'power_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"x"
,
TensorProto
.
FLOAT
,
list
(
x_shape
)),
helper
.
make_tensor_value_info
(
"y"
,
TensorProto
.
FLOAT
,
list
(
y_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
np_res
.
shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"x"
,
TensorProto
.
FLOAT
,
list
(
x_shape
)),
helper
.
make_tensor_value_info
(
"y"
,
TensorProto
.
FLOAT
,
list
(
y_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
np_res
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'power_test'
)
for
target
,
ctx
in
ctx_list
():
new_sym
,
params
=
nnvm
.
frontend
.
from_onnx
(
model
)
input_name
=
model
.
graph
.
input
[
0
]
.
name
input_name1
=
model
.
graph
.
input
[
1
]
.
name
shape_dict
=
{
input_name
:
x
.
shape
,
input_name1
:
y
.
shape
}
dtype_dict
=
{
input_name
:
x
.
dtype
,
input_name1
:
y
.
dtype
}
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
new_sym
,
target
,
shape_dict
,
dtype_dict
,
params
=
params
)
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
# set inputs
m
.
set_input
(
input_name
,
tvm
.
nd
.
array
(
x
))
m
.
set_input
(
input_name1
,
tvm
.
nd
.
array
(
y
))
m
.
set_input
(
**
params
)
m
.
run
()
# get outputs
tvm_out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
(
np_res
.
shape
,
np_res
.
dtype
))
np
.
testing
.
assert_allclose
(
np_res
,
tvm_out
.
asnumpy
(),
rtol
=
1e-5
,
atol
=
1e-5
)
tvm_out
=
get_tvm_output
(
model
,
[
x
,
y
],
target
,
ctx
,
np_res
.
shape
)
np
.
testing
.
assert_allclose
(
np_res
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_power
():
_test_power_iteration
((
1
,
3
),
(
1
))
...
...
@@ -160,13 +180,15 @@ def test_squeeze():
graph
=
helper
.
make_graph
([
y
],
'squeeze_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'squeeze_test'
)
for
target
,
ctx
in
ctx_list
():
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
'float32'
)
tvm_out
=
get_tvm_output
(
model
,
x
,
target
,
ctx
,
out_shape
,
'float32'
)
np
.
testing
.
assert_allclose
(
out_shape
,
tvm_out
.
shape
)
...
...
@@ -179,44 +201,47 @@ def test_unsqueeze():
graph
=
helper
.
make_graph
([
y
],
'squeeze_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'squeeze_test'
)
for
target
,
ctx
in
ctx_list
():
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
'float32'
)
tvm_out
=
get_tvm_output
(
model
,
x
,
target
,
ctx
,
out_shape
,
'float32'
)
np
.
testing
.
assert_allclose
(
out_shape
,
tvm_out
.
shape
)
def
verify_gather
(
in_shape
,
indices
,
axis
=
0
):
indices_src
=
np
.
array
(
indices
,
dtype
=
"int32"
)
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
out_np
=
np
.
take
(
x
,
indices_src
,
axis
=
axis
)
def
verify_gather
(
in_shape
,
indices
,
axis
,
dtype
):
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
dtype
)
indices
=
np
.
array
(
indices
,
dtype
=
"int32"
)
out_np
=
np
.
take
(
x
,
indices
,
axis
=
axis
)
y
=
helper
.
make_node
(
"Gather"
,
[
'in'
],
[
'out'
],
indices
=
indices
,
axis
=
axis
)
y
=
helper
.
make_node
(
"Gather"
,
[
'in'
,
'indices'
],
[
'out'
]
,
axis
=
axis
)
graph
=
helper
.
make_graph
([
y
],
'gather_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
TensorProto
.
FLOAT
,
list
(
in_shape
)),
helper
.
make_tensor_value_info
(
"indices"
,
TensorProto
.
INT32
,
list
(
indices
.
shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
out_np
.
shape
))])
TensorProto
.
FLOAT
,
list
(
out_np
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'gather_test'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
x
,
target
,
ctx
,
out_np
.
shape
,
'float32'
)
np
.
testing
.
assert_allclose
(
out_np
,
tvm_out
)
tvm_out
=
get_tvm_output
(
model
,
[
x
,
indices
],
target
,
ctx
,
out_np
.
shape
)
np
.
testing
.
assert_allclose
(
out_np
,
tvm_out
)
def
test_gather
():
verify_gather
((
4
,),
[
1
])
verify_gather
((
4
,),
[
0
,
1
,
2
,
3
])
verify_gather
((
4
,
2
),
[
1
],
1
)
verify_gather
((
4
,
3
,
5
,
6
),
[
2
,
1
,
0
,
0
],
-
2
)
verify_gather
((
4
,),
[
1
],
0
,
'int32'
)
verify_gather
((
1
,
4
),
[
0
],
0
,
'int32'
)
verify_gather
((
4
,),
[[[
1
,
0
],[
0
,
1
]]],
0
,
'float32'
)
verify_gather
((
2
,
2
),
[[[
1
,
0
],[
0
,
1
]]],
1
,
'int32'
)
verify_gather
((
3
,
3
,
3
),
[[[
1
,
0
]]],
-
1
,
'int32'
)
verify_gather
((
4
,
3
,
5
,
6
),
[[
2
,
1
,
0
,
0
]],
0
,
'float32'
)
def
_test_slice_iteration
(
indata
,
outdata
,
starts
,
ends
,
axes
=
None
):
if
axes
:
...
...
@@ -226,8 +251,10 @@ def _test_slice_iteration(indata, outdata, starts, ends, axes=None):
graph
=
helper
.
make_graph
([
y
],
'slice_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
indata
.
shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
outdata
.
shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
indata
.
shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
outdata
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'slice_test'
)
...
...
@@ -251,8 +278,10 @@ def _test_onnx_op_elementwise(inshape, outfunc, npargs, dtype, opname, kwargs):
graph
=
helper
.
make_graph
([
y
],
opname
+
'_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
indata
.
shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
outdata
.
shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
indata
.
shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
outdata
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
opname
+
'_test'
)
...
...
@@ -278,40 +307,27 @@ def test_clip():
def
test_matmul
():
a_shape
=
(
4
,
3
)
b_shape
=
(
3
,
4
)
out_shape
=
(
4
,
4
)
a_array
=
np
.
random
.
uniform
(
size
=
a_shape
)
.
astype
(
'float32'
)
b_array
=
np
.
random
.
uniform
(
size
=
b_shape
)
.
astype
(
'float32'
)
out_np
=
np
.
matmul
(
a_array
,
b_array
)
mul_node
=
helper
.
make_node
(
"MatMul"
,
[
"a"
,
"b"
],
[
"out"
])
graph
=
helper
.
make_graph
([
mul_node
],
"matmul_test"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"a"
,
TensorProto
.
FLOAT
,
list
(
a_shape
)),
helper
.
make_tensor_value_info
(
"b"
,
TensorProto
.
FLOAT
,
list
(
b_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
inputs
=
[
helper
.
make_tensor_value_info
(
"a"
,
TensorProto
.
FLOAT
,
list
(
a_shape
)),
helper
.
make_tensor_value_info
(
"b"
,
TensorProto
.
FLOAT
,
list
(
b_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
out_np
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'matmul_test'
)
for
target
,
ctx
in
ctx_list
():
new_sym
,
params
=
nnvm
.
frontend
.
from_onnx
(
model
)
input_name
=
model
.
graph
.
input
[
0
]
.
name
input_name1
=
model
.
graph
.
input
[
1
]
.
name
shape_dict
=
{
input_name
:
a_array
.
shape
,
input_name1
:
b_array
.
shape
}
dtype_dict
=
{
input_name
:
'float32'
,
input_name1
:
'float32'
}
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
new_sym
,
target
,
shape_dict
,
dtype_dict
,
params
=
params
)
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
# set inputs
m
.
set_input
(
input_name
,
tvm
.
nd
.
array
(
a_array
.
astype
(
'float32'
)))
m
.
set_input
(
input_name1
,
tvm
.
nd
.
array
(
b_array
.
astype
(
'float32'
)))
m
.
set_input
(
**
params
)
m
.
run
()
# get outputs
tvm_out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
(
out_shape
,
'float32'
))
np
.
testing
.
assert_allclose
(
np
.
matmul
(
a_array
,
b_array
),
tvm_out
.
asnumpy
(),
rtol
=
1e-5
,
atol
=
1e-5
)
tvm_out
=
get_tvm_output
(
model
,
[
a_array
,
b_array
],
target
,
ctx
,
out_np
.
shape
)
np
.
testing
.
assert_allclose
(
out_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
verify_lrn
(
shape
,
nsize
,
dtype
,
alpha
=
None
,
beta
=
None
,
bias
=
None
):
in_array
=
np
.
random
.
uniform
(
size
=
shape
)
.
astype
(
dtype
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment