Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
7e34988e
Commit
7e34988e
authored
Apr 21, 2019
by
Lianmin Zheng
Committed by
Tianqi Chen
Apr 20, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TOPI] Rename output tensors for better readability (#3006)
parent
c64a33ed
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
53 additions
and
51 deletions
+53
-51
topi/include/topi/broadcast.h
+4
-4
topi/include/topi/elemwise.h
+10
-10
topi/include/topi/nn.h
+9
-9
topi/include/topi/nn/pooling.h
+2
-2
topi/include/topi/transform.h
+22
-22
topi/python/topi/nn/dense.py
+1
-1
topi/python/topi/nn/softmax.py
+5
-3
No files found.
topi/include/topi/broadcast.h
View file @
7e34988e
...
...
@@ -46,7 +46,7 @@ namespace topi {
*/
inline
tvm
::
Tensor
broadcast_to
(
const
tvm
::
Tensor
&
t
,
const
tvm
::
Array
<
tvm
::
Expr
>&
output_shape
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_broadcast_to
"
,
std
::
string
tag
=
kBroadcast
)
{
CHECK_GE
(
output_shape
.
size
(),
t
->
shape
.
size
())
<<
"Not a broadcast, output dimensionality smaller than input.
\n
output: "
...
...
@@ -73,14 +73,14 @@ inline tvm::Tensor broadcast_to(const tvm::Tensor& t,
} \
inline tvm::Tensor Name(const tvm::Tensor& A, \
const tvm::Tensor& B, \
std::string name = "
tensor",
\
std::string name = "
T_" #Name,
\
std::string tag = kBroadcast) { \
auto l = [](tvm::Expr a, tvm::Expr b) { ComputeRule; }; \
return detail::WithBroadcast(l, A, B, name, tag); \
} \
inline tvm::Tensor Name(const tvm::Tensor& A, \
const tvm::Expr& B, \
std::string name = "
tensor",
\
std::string name = "
T_" #Name,
\
std::string tag = kElementWise) { \
auto l = [](tvm::Expr a, tvm::Expr b) { ComputeRule; }; \
return compute(A->shape, [&](const ::tvm::Array<::tvm::Var>& i) { \
...
...
@@ -89,7 +89,7 @@ inline tvm::Tensor broadcast_to(const tvm::Tensor& t,
} \
inline tvm::Tensor Name(const tvm::Expr& A, \
const tvm::Tensor& B, \
std::string name = "
tensor",
\
std::string name = "
T_" #Name,
\
std::string tag = kElementWise) { \
auto l = [&](tvm::Expr a, tvm::Expr b) { ComputeRule; }; \
return compute(B->shape, [&](const ::tvm::Array<::tvm::Var>& i) { \
...
...
topi/include/topi/elemwise.h
View file @
7e34988e
...
...
@@ -38,7 +38,7 @@ using namespace tvm;
// Unary intrinsic operators
#define TOPI_DECLARE_UNARY_OP(OpName) \
inline Tensor OpName(const Tensor& x, \
std::string name = "
tensor",
\
std::string name = "
T_" #OpName,
\
std::string tag = kElementWise) { \
return compute(x->shape, [&](const Array<Var>& i) { \
return ::tvm::OpName(x(i)); \
...
...
@@ -66,7 +66,7 @@ TOPI_DECLARE_UNARY_OP(abs);
* \return A Tensor whose op member is the identity operation
*/
inline
Tensor
identity
(
const
Tensor
&
x
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_identity
"
,
std
::
string
tag
=
kElementWise
)
{
return
compute
(
x
->
shape
,
[
&
](
const
Array
<
Var
>&
i
)
{
return
x
(
i
);
...
...
@@ -83,7 +83,7 @@ inline Tensor identity(const Tensor& x,
* \return A Tensor whose op member is the negation operation
*/
inline
Tensor
negative
(
const
Tensor
&
x
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_negative
"
,
std
::
string
tag
=
kElementWise
)
{
return
compute
(
x
->
shape
,
[
&
](
const
Array
<
Var
>&
i
)
{
return
-
x
(
i
);
...
...
@@ -100,7 +100,7 @@ inline Tensor negative(const Tensor& x,
* \return A Tensor whose op member is the logical NOT operation
*/
inline
Tensor
logical_not
(
const
Tensor
&
x
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_logical_not
"
,
std
::
string
tag
=
kElementWise
)
{
return
compute
(
x
->
shape
,
[
&
](
const
Array
<
Var
>&
i
)
{
return
!
x
(
i
);
...
...
@@ -117,7 +117,7 @@ inline Tensor logical_not(const Tensor& x,
* \return A Tensor whose op member is the sign
*/
inline
Tensor
sign
(
const
Tensor
&
x
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_sign
"
,
std
::
string
tag
=
kElementWise
)
{
return
compute
(
x
->
shape
,
[
&
](
const
Array
<
Var
>&
i
)
{
Expr
zero
=
make_zero
(
x
->
dtype
);
...
...
@@ -144,7 +144,7 @@ inline Tensor sign(const Tensor& x,
inline
Tensor
clip
(
const
Tensor
&
x
,
const
Expr
&
a_min
,
const
Expr
&
a_max
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_clip
"
,
std
::
string
tag
=
kElementWise
)
{
return
compute
(
x
->
shape
,
[
&
](
const
Array
<
Var
>&
i
)
{
auto
min_val
=
tvm
::
cast
(
x
->
dtype
,
a_min
);
...
...
@@ -167,7 +167,7 @@ inline Tensor clip(const Tensor& x,
*/
inline
Tensor
cast
(
const
Tensor
&
x
,
Type
type
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_cast
"
,
std
::
string
tag
=
kElementWise
)
{
return
compute
(
x
->
shape
,
[
&
](
const
Array
<
Var
>&
i
)
{
auto
expr
=
x
(
i
);
...
...
@@ -193,7 +193,7 @@ inline Tensor cast(const Tensor& x,
* \return A Tensor whose op member is the sum operation
*/
inline
Tensor
elemwise_sum
(
const
Array
<
Tensor
>&
xs
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_elemwise_sum
"
,
std
::
string
tag
=
kElementWise
)
{
CHECK_GT
(
xs
.
size
(),
0
)
<<
"elemwise sum must have at least one input tensor."
;
return
compute
(
xs
[
0
]
->
shape
,
[
&
](
const
Array
<
Var
>&
i
)
{
...
...
@@ -219,7 +219,7 @@ inline Tensor elemwise_sum(const Array<Tensor>& xs,
inline
Tensor
full
(
const
Array
<
Expr
>&
shape
,
Type
dtype
,
const
Expr
fill_value
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_full
"
,
std
::
string
tag
=
kElementWise
)
{
Expr
ev
=
cast
(
dtype
,
fill_value
);
if
(
!
ev
.
defined
())
{
...
...
@@ -243,7 +243,7 @@ inline Tensor full(const Array<Expr>& shape,
*/
inline
Tensor
full_like
(
const
Tensor
&
x
,
const
Expr
fill_value
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_full_like
"
,
std
::
string
tag
=
kElementWise
)
{
Expr
ev
=
cast
(
x
->
dtype
,
fill_value
);
return
compute
(
x
->
shape
,
[
&
](
const
Array
<
Var
>&
i
)
{
...
...
topi/include/topi/nn.h
View file @
7e34988e
...
...
@@ -63,7 +63,7 @@ tvm::Expr Map(const tvm::Array<tvm::Expr>& exprs, T op) {
template
<
typename
T
>
inline
tvm
::
Tensor
relu
(
const
tvm
::
Tensor
&
t
,
T
threshold
=
static_cast
<
T
>
(
0
),
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_relu
"
,
std
::
string
tag
=
kElementWise
)
{
return
tvm
::
compute
(
t
->
shape
,
...
...
@@ -87,7 +87,7 @@ inline tvm::Tensor relu(const tvm::Tensor& t,
*/
inline
tvm
::
Tensor
leaky_relu
(
const
tvm
::
Tensor
&
t
,
double
alpha
=
0
.
1
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_leaky_relu
"
,
std
::
string
tag
=
kElementWise
)
{
return
tvm
::
compute
(
t
->
shape
,
...
...
@@ -114,7 +114,7 @@ inline tvm::Tensor leaky_relu(const tvm::Tensor& t,
inline
tvm
::
Tensor
prelu
(
const
tvm
::
Tensor
&
x
,
const
tvm
::
Tensor
&
slope
,
const
int
axis
=
1
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_prelu
"
,
std
::
string
tag
=
kBroadcast
)
{
CHECK
((
size_t
)
axis
<
x
->
shape
.
size
())
<<
"Wrong axis ("
<<
axis
<<
")value. "
;
...
...
@@ -171,7 +171,7 @@ inline tvm::Tensor pad(const tvm::Tensor& t,
const
tvm
::
Array
<
tvm
::
Expr
>&
pad_before
,
tvm
::
Array
<
tvm
::
Expr
>
pad_after
=
tvm
::
Array
<
tvm
::
Expr
>
(),
Expr
pad_value
=
Expr
(),
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_pad
"
,
std
::
string
tag
=
kElementWise
)
{
if
(
pad_after
.
size
()
<
pad_before
.
size
())
{
for
(
size_t
i
=
pad_after
.
size
();
i
<
pad_before
.
size
();
++
i
)
{
...
...
@@ -247,7 +247,7 @@ inline tvm::Tensor conv2d_nchw(const tvm::Tensor& I,
int
pad_w
=
0
,
int
stride_h
=
1
,
int
stride_w
=
1
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_conv2d_nchw
"
,
std
::
string
tag
=
kConv2dNCHW
)
{
CHECK_EQ
(
4
,
I
->
shape
.
size
());
CHECK_EQ
(
4
,
W
->
shape
.
size
());
...
...
@@ -298,7 +298,7 @@ inline tvm::Tensor conv2d_hwcn(const tvm::Tensor& I,
int
pad_w
=
0
,
int
stride_h
=
1
,
int
stride_w
=
1
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_conv2d_hwcn
"
,
std
::
string
tag
=
kConv2dHWCN
)
{
CHECK_EQ
(
4
,
I
->
shape
.
size
());
CHECK_EQ
(
4
,
W
->
shape
.
size
());
...
...
@@ -349,7 +349,7 @@ inline tvm::Tensor depthwise_conv2d_nchw(const tvm::Tensor& I,
int
pad_w
=
0
,
int
stride_h
=
1
,
int
stride_w
=
1
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_depthwise_conv2d_nchw
"
,
std
::
string
tag
=
kDepthwiseConv2dNCHW
)
{
CHECK_EQ
(
4
,
I
->
shape
.
size
());
CHECK_EQ
(
4
,
W
->
shape
.
size
());
...
...
@@ -382,7 +382,7 @@ inline tvm::Tensor depthwise_conv2d_nhwc(const tvm::Tensor& I,
int
pad_w
=
0
,
int
stride_h
=
1
,
int
stride_w
=
1
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_depthwise_conv2d_nhwc
"
,
std
::
string
tag
=
kDepthwiseConv2dNHWC
)
{
CHECK_EQ
(
4
,
I
->
shape
.
size
());
CHECK_EQ
(
4
,
W
->
shape
.
size
());
...
...
@@ -435,7 +435,7 @@ inline tvm::Tensor group_conv2d_ngchw(const tvm::Tensor& I,
int
pad_w
=
0
,
int
stride_h
=
1
,
int
stride_w
=
1
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_group_conv2d_ngchw
"
,
std
::
string
tag
=
kGroupConv2d
)
{
CHECK_EQ
(
5
,
I
->
shape
.
size
());
CHECK_EQ
(
5
,
W
->
shape
.
size
());
...
...
topi/include/topi/nn/pooling.h
View file @
7e34988e
...
...
@@ -272,8 +272,8 @@ inline Tensor global_pool(const Tensor& x,
auto
height
=
x
->
shape
[
height_axis
];
auto
width
=
x
->
shape
[
width_axis
];
auto
dheight
=
tvm
::
reduce_axis
(
Range
(
0
,
height
));
auto
dwidth
=
tvm
::
reduce_axis
(
Range
(
0
,
width
));
auto
dheight
=
tvm
::
reduce_axis
(
Range
(
0
,
height
)
,
"rv1"
);
auto
dwidth
=
tvm
::
reduce_axis
(
Range
(
0
,
width
)
,
"rv2"
);
if
(
pool_type
==
kMaxPool
)
{
return
tvm
::
compute
(
out_shape
,
...
...
topi/include/topi/transform.h
View file @
7e34988e
...
...
@@ -57,7 +57,7 @@ using namespace topi::detail;
inline
Tensor
expand_dims
(
const
Tensor
&
x
,
int
axis
,
int
num_newaxis
=
1
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_expand_dims
"
,
std
::
string
tag
=
kBroadcast
)
{
int
ndim
=
static_cast
<
int
>
(
x
->
shape
.
size
());
CHECK
(
-
ndim
-
1
<=
axis
&&
axis
<=
ndim
)
...
...
@@ -108,7 +108,7 @@ inline Tensor expand_dims(const Tensor& x,
*/
inline
Tensor
transpose
(
const
Tensor
&
x
,
Array
<
Integer
>
axes
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_transpose
"
,
std
::
string
tag
=
kInjective
)
{
if
(
!
axes
.
defined
()
||
axes
.
size
()
==
0
)
{
axes
=
Array
<
Integer
>
();
...
...
@@ -164,7 +164,7 @@ inline Tensor transpose(const Tensor& x,
*/
inline
Tensor
flip
(
const
Tensor
&
x
,
int
axis
=
0
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_flip
"
,
std
::
string
tag
=
kInjective
)
{
size_t
src_tensor_dim
=
x
->
shape
.
size
();
int
axis_inp
=
axis
;
...
...
@@ -204,7 +204,7 @@ inline Tensor flip(const Tensor& x,
*/
inline
Tensor
reshape
(
const
Tensor
&
x
,
Array
<
Expr
>
newshape
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_reshape
"
,
std
::
string
tag
=
kInjective
)
{
auto
x_shape
=
x
->
shape
;
return
compute
(
...
...
@@ -229,7 +229,7 @@ inline Tensor reshape(const Tensor& x,
inline
Tensor
squeeze
(
const
Tensor
&
x
,
Array
<
Integer
>
axis
,
bool
atleast1d
=
false
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_squeeze
"
,
std
::
string
tag
=
kInjective
)
{
auto
ndim
=
x
->
shape
.
size
();
std
::
vector
<
int
>
axis_val
;
...
...
@@ -291,7 +291,7 @@ inline Tensor squeeze(const Tensor& x,
*/
inline
Tensor
concatenate
(
const
Array
<
Tensor
>&
inputs
,
int
axis
=
0
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_concat
"
,
std
::
string
tag
=
kInjective
)
{
int
ndim
=
static_cast
<
int
>
(
inputs
[
0
]
->
shape
.
size
());
CHECK
(
-
ndim
<=
axis
&&
axis
<
ndim
)
...
...
@@ -355,7 +355,7 @@ inline Tensor concatenate(const Array<Tensor>& inputs,
*/
inline
Tensor
stack
(
const
Array
<
Tensor
>&
inputs
,
int
axis
=
0
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_stack
"
,
std
::
string
tag
=
kInjective
)
{
int
ndim
=
static_cast
<
int
>
(
inputs
[
0
]
->
shape
.
size
());
CHECK
(
-
ndim
-
1
<=
axis
&&
axis
<=
ndim
)
...
...
@@ -408,7 +408,7 @@ inline Tensor stack(const Array<Tensor>& inputs,
inline
Array
<
Tensor
>
split
(
const
Tensor
&
x
,
Array
<
Integer
>
split_indices
,
int
axis
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_split
"
,
std
::
string
tag
=
kInjective
)
{
if
(
axis
<
0
)
{
axis
+=
static_cast
<
int
>
(
x
->
shape
.
size
());
...
...
@@ -486,7 +486,7 @@ inline Tensor strided_slice(const Tensor& x,
const
Array
<
Integer
>&
begin
,
const
Array
<
Integer
>&
end
,
const
Array
<
Integer
>&
strides
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_strided_slice
"
,
std
::
string
tag
=
kInjective
)
{
size_t
src_tensor_dim
=
static_cast
<
size_t
>
(
x
->
shape
.
size
());
// Setup the ranges.
...
...
@@ -585,7 +585,7 @@ inline Tensor strided_slice(const Tensor& x,
inline
Array
<
Tensor
>
split_sections
(
const
Tensor
&
x
,
int
num_sections
,
int
axis
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_split_sections
"
,
std
::
string
tag
=
kInjective
)
{
if
(
axis
<
0
)
{
axis
+=
static_cast
<
int
>
(
x
->
shape
.
size
());
...
...
@@ -624,7 +624,7 @@ inline Array<Tensor> split_sections(const Tensor& x,
inline
Tensor
take
(
const
Tensor
&
a
,
const
Tensor
&
indices
,
std
::
string
mode
=
"clip"
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_take
"
,
std
::
string
tag
=
kInjective
)
{
Array
<
Expr
>
a_shape
=
a
->
shape
;
Array
<
Expr
>
out_shape
=
indices
->
shape
;
...
...
@@ -664,7 +664,7 @@ inline Tensor take(const Tensor& a,
const
Tensor
&
indices
,
int
axis
,
std
::
string
mode
=
"clip"
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_take
"
,
std
::
string
tag
=
kInjective
)
{
if
(
axis
<
0
)
{
axis
+=
static_cast
<
int
>
(
a
->
shape
.
size
());
...
...
@@ -738,7 +738,7 @@ inline Tensor take(const Tensor& a,
inline
Tensor
where
(
const
Tensor
&
condition
,
const
Tensor
&
x
,
const
Tensor
&
y
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_where
"
,
std
::
string
tag
=
kInjective
)
{
CHECK_EQ
(
x
->
shape
.
size
(),
y
->
shape
.
size
())
<<
"x and y must have the same shape.Got different number of dimension: "
...
...
@@ -786,7 +786,7 @@ inline Tensor where(const Tensor& condition,
inline
Tensor
repeat
(
const
Tensor
&
x
,
int
repeats
,
int
axis
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_repeat
"
,
std
::
string
tag
=
kBroadcast
)
{
int
ndim
=
static_cast
<
int
>
(
x
->
shape
.
size
());
CHECK
(
-
ndim
-
1
<=
axis
&&
axis
<=
ndim
)
...
...
@@ -835,7 +835,7 @@ inline Tensor repeat(const Tensor& x,
*/
inline
Tensor
tile
(
const
Tensor
&
x
,
Array
<
Integer
>
reps
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_tile
"
,
std
::
string
tag
=
kBroadcast
)
{
size_t
ndim
=
x
->
shape
.
size
();
size_t
rdim
=
reps
.
size
();
...
...
@@ -892,7 +892,7 @@ inline Tensor tile(const Tensor& x,
*/
inline
Tensor
gather_nd
(
const
Tensor
&
data
,
const
Tensor
&
indices
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_gather_nd
"
,
std
::
string
tag
=
kInjective
)
{
size_t
ndim_d
=
data
->
shape
.
size
();
size_t
ndim_i
=
indices
->
shape
.
size
();
...
...
@@ -953,7 +953,7 @@ inline tvm::Tensor matmul(const tvm::Tensor& A,
const
tvm
::
Tensor
&
B
,
bool
trans_a
=
false
,
bool
trans_b
=
false
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_matmul
"
,
std
::
string
tag
=
kMatMul
)
{
tvm
::
Array
<
tvm
::
Expr
>
output_shape
{
A
->
shape
[
trans_a
?
1
:
0
],
B
->
shape
[
trans_b
?
0
:
1
]};
...
...
@@ -979,7 +979,7 @@ inline tvm::Tensor matmul(const tvm::Tensor& A,
inline
Tensor
tensordot
(
const
Tensor
&
A
,
const
tvm
::
Tensor
&
B
,
int
axes
=
2
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_tensordot
"
,
std
::
string
tag
=
kMatMul
)
{
CHECK_GE
(
A
->
shape
.
size
(),
axes
);
CHECK_GE
(
B
->
shape
.
size
(),
axes
);
...
...
@@ -1035,7 +1035,7 @@ inline Tensor tensordot(const Tensor& A,
const
tvm
::
Tensor
&
B
,
Array
<
Expr
>
A_axes
,
Array
<
Expr
>
B_axes
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_tensordot
"
,
std
::
string
tag
=
kMatMul
)
{
CHECK_EQ
(
A_axes
.
size
(),
B_axes
.
size
());
...
...
@@ -1084,7 +1084,7 @@ inline Tensor arange(const Expr start,
const
Expr
stop
,
const
Expr
step
,
Type
dtype
,
std
::
string
name
=
"
tensor
"
,
std
::
string
name
=
"
T_arange
"
,
std
::
string
tag
=
kInjective
)
{
Expr
num_elem
=
tvm
::
cast
(
tvm
::
Int
(
32
),
tvm
::
ceil
(
tvm
::
cast
(
tvm
::
Float
(
32
),
stop
-
start
)
/
step
));
...
...
@@ -1106,7 +1106,7 @@ inline Tensor arange(const Expr start,
inline
Tensor
layout_transform
(
const
Tensor
&
src
,
const
std
::
string
&
src_layout
,
const
std
::
string
&
dst_layout
,
const
std
::
string
name
=
"
layout_transform
"
,
const
std
::
string
name
=
"
T_layout_trans
"
,
const
std
::
string
tag
=
kInjective
)
{
Layout
src_layout_struct
=
LayoutNode
::
make
(
src_layout
);
Layout
dst_layout_struct
=
LayoutNode
::
make
(
dst_layout
);
...
...
@@ -1142,7 +1142,7 @@ inline Tensor layout_transform(const Tensor& src,
*/
inline
Tensor
shape
(
const
Tensor
&
src
,
Type
dtype
,
const
std
::
string
name
=
"shape"
,
const
std
::
string
name
=
"
T_
shape"
,
const
std
::
string
tag
=
kInjective
)
{
int
ndim
=
static_cast
<
int
>
(
src
->
shape
.
size
());
Array
<
Expr
>
out_shape
{
ndim
};
...
...
topi/python/topi/nn/dense.py
View file @
7e34988e
...
...
@@ -47,7 +47,7 @@ def dense_default(data, weight, bias=None):
k
=
tvm
.
reduce_axis
((
0
,
in_dim
),
name
=
'k'
)
matmul
=
tvm
.
compute
((
batch
,
out_dim
),
\
lambda
i
,
j
:
tvm
.
sum
(
data
[
i
,
k
]
*
weight
[
j
,
k
],
axis
=
k
),
\
tag
=
'dense'
)
name
=
'T_dense'
,
tag
=
'dense'
)
if
bias
is
not
None
:
matmul
=
tvm
.
compute
((
batch
,
out_dim
),
\
lambda
i
,
j
:
matmul
[
i
,
j
]
+
bias
[
j
],
\
...
...
topi/python/topi/nn/softmax.py
View file @
7e34988e
...
...
@@ -61,9 +61,11 @@ def softmax(x, axis=-1):
return
tvm
.
exp
(
x
[
indices
]
-
max_elem
[
non_reduce_indices
])
/
expsum
[
non_reduce_indices
]
reduced_shape
=
tuple
([
dim
for
(
i
,
dim
)
in
enumerate
(
shape
)
if
i
!=
axis
])
max_elem
=
tvm
.
compute
(
reduced_shape
,
_compute_max
)
expsum
=
tvm
.
compute
(
reduced_shape
,
lambda
*
indices
:
_compute_expsum
(
max_elem
,
*
indices
))
return
tvm
.
compute
(
shape
,
lambda
*
indices
:
_normalize
(
max_elem
,
expsum
,
*
indices
))
max_elem
=
tvm
.
compute
(
reduced_shape
,
_compute_max
,
name
=
'T_softmax_maxelem'
)
expsum
=
tvm
.
compute
(
reduced_shape
,
lambda
*
indices
:
_compute_expsum
(
max_elem
,
*
indices
),
name
=
'T_softmax_expsum'
)
return
tvm
.
compute
(
shape
,
lambda
*
indices
:
_normalize
(
max_elem
,
expsum
,
*
indices
),
name
=
'T_softmax_norm'
)
@tvm.tag_scope
(
tag
=
'log_softmax_output'
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment