Commit 73dda6be by Animesh Jain Committed by Yizhi Liu

[Relay] Convert Layout Pass. (#4335)

parent 641024f5
......@@ -29,6 +29,7 @@
#include <tvm/build_module.h>
#include <tvm/relay/type.h>
#include <tvm/relay/expr.h>
#include <string>
namespace tvm {
namespace relay {
......@@ -133,6 +134,22 @@ using FTVMAlterOpLayout = runtime::TypedPackedFunc<
const Array<Tensor>& tinfos)>;
/*!
* \brief Convert the layout of operators or replace the
* operator with other expressions. This function will be invoked
* in ConvertLayout pass.
* \param attrs The attribute of the original node.
* \param inputs The input symbols of the original node.
* \param tinfos An array of placeholders, use for getting the inferred shape
* and dtype of the inputs.
* \param desired_layout The desired layout.
* \return new_expr The modified expression.
*/
using FTVMConvertOpLayout = runtime::TypedPackedFunc<
Expr(const Attrs& attrs,
const Array<Expr>& args,
const Array<Tensor>& tinfos,
const std::string& desired_layout)>;
/*!
* \brief Legalizes an expression with another expression. This function will be
* invoked in Legalize pass. It is a target-dependent pass.
* \param attrs The attribute of the original node.
......
......@@ -533,6 +533,26 @@ TVM_DLL Pass CanonicalizeOps();
TVM_DLL Pass AlterOpLayout();
/*!
* \brief Given a dest layout, this pass transforms the expr such that most of the ops input data
* layout is changed to the dest layout. In ideal situation, there are only 2 layout transforms, one
* at the start and one at the end.
*
* This pass is not a part of relay.build and is expected to be called between framework-relay
* parser and relay.build call. This is very helpful for hardware backends that support/prefer only
* type of data layout.
*
* RFC - https://discuss.tvm.ai/t/layout-conversion-pass/4009
*
* This pass uses most of the AlterOpLayout and InferCorrectLayout infrastructure. We can define new
* layouts for conv2d ops for now. Most of the other operators try to adapt to their input layout
* using the InferCorrectLayout infrastructure.
*
* \param desired_layout The desired layout.
* \return The pass.
*/
TVM_DLL Pass ConvertLayout(const std::string& desired_layout);
/*!
* \brief Legalizes an expr with another expression.
* \param legalize_map_attr_name The Op's attr name which corresponds to the legalize rule function.
* One can collect and isolate similar type of legalize transformations using this param. For
......
......@@ -251,6 +251,47 @@ def legalize_conv2d(attrs, inputs, types):
"""
return topi.nn.conv2d_legalize(attrs, inputs, types)
@reg.register_convert_op_layout("nn.conv2d")
def convert_conv2d(attrs, inputs, tinfos, desired_layout):
"""Convert Layout pass registration for conv2d op.
Parameters
----------
attrs : tvm.attrs.Attrs
Attributes of current convolution
inputs : list of tvm.relay.Expr
The args of the Relay expr to be legalized
tinfos : list of types
List of input and output types
desired_layout : str
The desired layout
Returns
-------
result : tvm.relay.Expr
The transformed expr
"""
from tvm import relay
data_layout = attrs['data_layout']
kernel_layout = attrs['kernel_layout']
data, weight = inputs
assert desired_layout == 'NCHW', \
"Currently only transformation to NCHW layout is supported."
if desired_layout == 'NCHW':
new_attrs = dict(attrs)
new_attrs['data_layout'] = desired_layout
new_attrs['kernel_layout'] = 'OIHW'
if data_layout == 'NHWC' and kernel_layout == 'HWIO':
# Convert (NHWC, HWIO) to (NCHW, OIHW)
return relay.nn.conv2d(data, weight, **new_attrs)
if data_layout == 'NHWC' and kernel_layout == 'HWOI':
# Convert (NHWC, HWOI) to (NCHW, OIHW). Depthwise conv2d.
return relay.nn.conv2d(data, weight, **new_attrs)
return None
reg.register_pattern("nn.conv2d", OpPattern.OUT_ELEMWISE_FUSABLE)
......
......@@ -196,6 +196,23 @@ def register_alter_op_layout(op_name, alter_layout=None, level=10):
return register(op_name, "FTVMAlterOpLayout", alter_layout, level)
def register_convert_op_layout(op_name, convert_layout=None, level=10):
"""Register convert op layout function for an op
Parameters
----------
op_name : str
The name of the operator
convert_layout: function (attrs: Attrs, inputs: List[Expr]) -> new_expr: Expr
The function for changing the layout or replacing the operator
level : int
The priority level
"""
return register(op_name, "FTVMConvertOpLayout", convert_layout, level)
def register_legalize(op_name, legal_op=None, level=10):
"""Register legal transformation function for an op
......
......@@ -460,6 +460,34 @@ def AlterOpLayout():
return _transform.AlterOpLayout()
def ConvertLayout(desired_layout):
""" Given a dest layout, this pass transforms the expr such that most of the ops input data
layout is changed to the dest layout. In ideal situation, there are only 2 layout transforms,
one at the start and one at the end.
This pass is not a part of relay.build and is expected to be called between framework-relay
parser and relay.build call. This is very helpful for hardware backends that support/prefer only
type of data layout.
RFC - https://discuss.tvm.ai/t/layout-conversion-pass/4009
This pass uses most of the AlterOpLayout and InferCorrectLayout infrastructure. We can define
new layouts for conv2d ops for now. Most of the other operators try to adapt to their input
layout using the InferCorrectLayout infrastructure.
Parameters
----------
desired_layout : str
The desired layout for the transformed expr.
Returns
-------
pass: FunctionPass
The pass.
"""
return _transform.ConvertLayout(desired_layout)
def Legalize(legalize_map_attr_name="FTVMLegalize"):
"""Legalizes an expression with another expression.
This pass can be used to replace an expr with another expr for target
......
......@@ -30,7 +30,7 @@
#include <tvm/relay/op_attr_types.h>
#include <topi/elemwise.h>
#include "../../pass/alter_op_layout.h"
#include "../../pass/infer_layout_util.h"
#include "../type_relations.h"
namespace tvm {
......
......@@ -33,7 +33,7 @@
#include <tvm/relay/op_attr_types.h>
#include "type_relations.h"
#include "../pass/alter_op_layout.h"
#include "../pass/infer_layout_util.h"
namespace tvm {
namespace relay {
......
......@@ -29,7 +29,7 @@
#include <tvm/relay/attrs/memory.h>
#include "../op_common.h"
#include "../../pass/alter_op_layout.h"
#include "../../pass/infer_layout_util.h"
#include "../type_relations.h"
namespace tvm {
......
......@@ -26,7 +26,7 @@
#include <tvm/relay/attrs/bitserial.h>
#include <tvm/relay/op.h>
#include "../../pass/alter_op_layout.h"
#include "../../pass/infer_layout_util.h"
namespace tvm {
namespace relay {
......
......@@ -27,7 +27,7 @@
#include <tvm/relay/attrs/nn.h>
#include <vector>
#include "../../pass/alter_op_layout.h"
#include "../../pass/infer_layout_util.h"
#include "../op_common.h"
#include "convolution.h"
......
......@@ -33,7 +33,7 @@
#include <vector>
#include <string>
#include "../type_relations.h"
#include "../../pass/alter_op_layout.h"
#include "../../pass/infer_layout_util.h"
#include "../op_common.h"
#include "nn.h"
......
......@@ -27,7 +27,7 @@
#include <tvm/relay/attrs/nn.h>
#include <topi/nn/pooling.h>
#include <vector>
#include "../../pass/alter_op_layout.h"
#include "../../pass/infer_layout_util.h"
namespace tvm {
namespace relay {
......
......@@ -27,7 +27,7 @@
#include <tvm/relay/attrs/nn.h>
#include <vector>
#include "../../pass/alter_op_layout.h"
#include "../../pass/infer_layout_util.h"
namespace tvm {
namespace relay {
......
......@@ -32,7 +32,7 @@
#include <string>
#include <unordered_map>
#include "type_relations.h"
#include "../pass/alter_op_layout.h"
#include "../pass/infer_layout_util.h"
namespace tvm {
namespace relay {
......
......@@ -36,7 +36,7 @@
#include <vector>
#include "../op_common.h"
#include "../../../arithmetic/compute_expr.h"
#include "../../pass/alter_op_layout.h"
#include "../../pass/infer_layout_util.h"
#include "../../pass/pattern_util.h"
#include "transform.h"
......
......@@ -36,7 +36,7 @@
#include <utility>
#include <unordered_map>
#include "alter_op_layout.h"
#include "transform_layout.h"
#include "pattern_util.h"
namespace tvm {
......@@ -44,328 +44,73 @@ namespace relay {
namespace alter_op_layout {
// Make a transform CallNode
/* Performs 2 operations
* 1) If src_layout ndim is smaller then dst_layout, expand_dim is inserted to match the dim size.
* For example, src_layout = C, dst_layout = NCHW16c. The src is expanded to NHWC.
* 2) Call layout transform with new src layout.
/*!
* \brief Container to instantiate a Node for alter op layouts.
*/
Expr TransformLayout(Expr raw, Layout src_layout, Layout dst_layout) {
if (src_layout.Equals(dst_layout)) {
return raw;
}
// 1) Check if the shape lengths are different. If yes, expand dims.
Expr input_expr = raw;
Layout new_src_layout = src_layout;
if (src_layout.ndim_primal() < dst_layout.ndim_primal()) {
int num_new_axis = dst_layout.ndim_primal() - src_layout.ndim_primal();
new_src_layout = src_layout.ExpandPrimal(dst_layout);
input_expr = MakeExpandDims(input_expr, 0, num_new_axis);
if (new_src_layout.Equals(dst_layout)) {
return input_expr;
}
}
// 2) Insert layout transform on the transformed src.
CHECK(new_src_layout.defined() && dst_layout.defined())
<< "Cannot insert layout transform because there are undefined layouts";
CHECK(BijectiveLayoutNode::make(new_src_layout, dst_layout).defined())
<< "Cannot insert layout transform because there are inconvertible layouts: "
<< new_src_layout << " v.s. " << dst_layout;
return MakeLayoutTransform(input_expr, new_src_layout.name(), dst_layout.name());
}
// Memorize layout transform so we can reuse internal transformed nodes
class TransformMemorizerNode : public Node {
class AlterTransformMemorizerNode : public TransformMemorizerNode {
public:
// map from (Expr, src_layout, dst_layout) to transformed Expr
using TransformKey = std::tuple<const Node*, std::string, std::string>;
struct key_hash : public std::function<std::size_t(TransformKey)> {
std::size_t operator()(const TransformKey& k) const {
return dmlc::HashCombine<std::string>(dmlc::HashCombine<std::string>(
std::hash<const Node*>()(std::get<0>(k)), std::get<1>(k)), (std::get<2>(k)));
}
};
std::unordered_map<TransformKey, Expr, key_hash> memo;
static constexpr const char *_type_key = "relay.alter_op_layout.TransformMemorizerNode";
TVM_DECLARE_NODE_TYPE_INFO(TransformMemorizerNode, Node);
};
class TransformMemorizer : public NodeRef {
public:
TransformMemorizer() {}
explicit TransformMemorizer(ObjectPtr<Object> n) : NodeRef(n) {}
TransformMemorizerNode* operator->() {
return static_cast<TransformMemorizerNode*>(get_mutable());
}
// Transform layout with memorizer
Expr Transform(Expr raw, const Layout& src_layout, const Layout& dst_layout) {
if (src_layout.Equals(dst_layout)) { return raw; }
std::tuple<const Node*, std::string, std::string> key =
std::make_tuple<>(raw.get(), src_layout.name(), dst_layout.name());
auto& memo = operator->()->memo;
auto iter = memo.find(key);
if (iter != memo.end()) {
return iter->second;
} else {
Expr transform = TransformLayout(raw, src_layout, dst_layout);
memo[key] = transform;
return transform;
}
}
using ContainerType = TransformMemorizerNode;
static constexpr const char* _type_key = "relay.alter_op_layout.AlterTransformMemorizerNode";
};
// TempExprNode during layout transform
// Instance of this expr will be Realized to normal expr ultimately
class LayoutAlternatedExprNode : public TempExprNode {
/*!
* \brief Container that provides the transformation function for alter layout..
*/
class AlterTransformMemorizer : public TransformMemorizer {
public:
Expr value;
Layout old_layout;
Layout new_layout;
TransformMemorizer memorizer;
Expr Realize() const final {
// NOTE: use a copy to discard the "const" qualifier
TransformMemorizer tmp_memorizer = memorizer;
// fallback to old layout
return tmp_memorizer.Transform(value, new_layout, old_layout);
}
void VisitAttrs(AttrVisitor *v) {
v->Visit("value", &value);
v->Visit("old_layout", &old_layout);
v->Visit("new_layout", &new_layout);
}
static constexpr const char *_type_key = "relay.alter_op_layout.LayoutAlternatedExprNode";
TVM_DECLARE_NODE_TYPE_INFO(LayoutAlternatedExprNode, TempExprNode);
};
RELAY_DEFINE_NODE_REF(LayoutAlternatedExpr, LayoutAlternatedExprNode, TempExpr);
// Call registered FInferCorrectLayout of an op.
// Parameters are the same as the parameters for FInferCorrectLayout
// Returns inferred_input_layout, inferred_output_layout, success
std::tuple<Array<Layout>, Array<Layout>, bool> CallInfer(
const Call& call,
const Array<Layout>& new_in_layouts,
const Array<Layout>& old_in_layouts,
const Array<Array<IndexExpr> > &old_in_shapes) {
static auto finfer_layout = Op::GetAttr<FInferCorrectLayout>("FInferCorrectLayout");
if (!call->op.as<OpNode>()) {
return std::make_tuple<>(Array<Layout>(nullptr), Array<Layout>(nullptr), false);
}
Op op = Downcast<Op>(call->op);
if (finfer_layout.count(op)) {
Array<Array<Layout> > inferred_layouts;
inferred_layouts = finfer_layout[op](call->attrs, new_in_layouts,
old_in_layouts, old_in_shapes);
CHECK_EQ(inferred_layouts.size(), 2)
<< "FInferCorrectLayout should return an array with size of 2";
for (auto x : inferred_layouts) {
for (auto y : x) {
if (!y.defined()) { // inference fails
return std::make_tuple<>(Array<Layout>(nullptr), Array<Layout>(nullptr), false);
}
AlterTransformMemorizer() {}
explicit AlterTransformMemorizer(ObjectPtr<Object> n) : TransformMemorizer(n) {}
AlterTransformMemorizerNode* operator->() {
return static_cast<AlterTransformMemorizerNode*>(get_mutable());
}
/*!
* \brief Defines the call transformation for AlterOpLayout pass. The new layouts are defined by
* used for different targets using a packed func.
* \param ref_call The original call.
* \param new_args The traversed/recursed args to the call.
* \return The new Call after calling the packed func.
*/
Call CallWithNewLayouts(const Call& ref_call, const std::vector<Expr>& new_args) override {
static auto falter_layout = Op::GetAttr<FTVMAlterOpLayout>("FTVMAlterOpLayout");
Op op = Downcast<Op>(ref_call->op);
Expr new_e;
bool modified = false;
if (falter_layout.count(op)) {
tvm::Array<tvm::Tensor> tinfos;
for (auto expr : ref_call->args) {
auto ttype = expr->type_as<TensorTypeNode>();
tinfos.push_back(tvm::placeholder(ttype->shape, ttype->dtype));
}
}
return std::make_tuple<>(inferred_layouts[0], inferred_layouts[1], true);
} else {
return std::make_tuple<>(Array<Layout>(nullptr), Array<Layout>(nullptr), false);
}
}
// Call registered FTVMAlterOpLayout of an op
// Returns the altered expression
Call CallAlter(const Call& ref_call,
const std::vector<Expr>& new_args) {
static auto falter_layout = Op::GetAttr<FTVMAlterOpLayout>("FTVMAlterOpLayout");
Op op = Downcast<Op>(ref_call->op);
Expr new_e;
bool modified = false;
if (falter_layout.count(op)) {
tvm::Array<tvm::Tensor> tinfos;
for (auto expr : ref_call->args) {
auto ttype = expr->type_as<TensorTypeNode>();
tinfos.push_back(tvm::placeholder(ttype->shape, ttype->dtype));
}
Expr altered_value = falter_layout[op](ref_call->attrs, new_args, tinfos);
if (altered_value.defined()) {
new_e = altered_value;
modified = true;
}
}
if (!modified) {
new_e = CallNode::make(ref_call->op, new_args,
ref_call->attrs);
}
const CallNode *new_call = new_e.as<CallNode>();
CHECK(new_call) << "Can only replace the original operator with another call node";
return GetRef<Call>(new_call);
}
Expr AlterOpLayoutRewrite(const Call &ref_call,
const Array<Expr> &new_args,
const NodeRef& ctx) {
std::vector<LayoutAlternatedExpr> inputs;
std::vector<Expr> normal_new_args;
Array<Array<IndexExpr> > input_shapes;
// NOTE: discard the "const" qualifier
TransformMemorizer memorizer = Downcast<TransformMemorizer>(ctx);
// fill incomplete state and flatten tuple
auto push_back_one_arg = [&inputs, memorizer](Expr arg) {
// We always expect LayoutAlternatedExpr.
// This is used to convert the normal Expr to LayoutAlternatedExpr.
if (const LayoutAlternatedExprNode *inp = arg.as<LayoutAlternatedExprNode>()) {
inputs.push_back(GetRef<LayoutAlternatedExpr>(inp));
return inp->value;
} else {
auto inode = make_node<LayoutAlternatedExprNode>();
inode->value = arg;
inode->memorizer = memorizer;
inputs.push_back(LayoutAlternatedExpr(inode));
return arg;
}
};
for (auto new_arg : new_args) {
// NOTE: do not support nested tuple
if (new_arg->IsInstance<TupleNode>()) {
Tuple tuple_new_arg = Downcast<Tuple>(new_arg);
std::vector<Expr> fields;
for (auto x : tuple_new_arg->fields) {
Expr tmp = push_back_one_arg(x);
fields.push_back(tmp);
Expr altered_value = falter_layout[op](ref_call->attrs, new_args, tinfos);
if (altered_value.defined()) {
new_e = altered_value;
modified = true;
}
normal_new_args.push_back(TupleNode::make(fields));
} else {
Expr tmp = push_back_one_arg(new_arg);
normal_new_args.push_back(tmp);
}
}
// old_in, new_in = state[inputs]
Array<Layout> old_in, old_out, new_in, new_out, new_in2;
for (auto inp : inputs) {
old_in.push_back(inp->old_layout);
new_in.push_back(inp->new_layout);
}
for (auto arg : ref_call->args) {
if (arg->IsInstance<TupleNode>()) { // flatten tuple
Tuple tuple_arg = Downcast<Tuple>(arg);
for (auto x : tuple_arg->fields) {
input_shapes.push_back(x->type_as<TensorTypeNode>()->shape);
}
} else {
input_shapes.push_back(arg->type_as<TensorTypeNode>()->shape);
if (!modified) {
new_e = CallNode::make(ref_call->op, new_args, ref_call->attrs);
}
}
// old_in, old_out = op.infer(old_in)
bool success = false;
std::tie(old_in, old_out, success) = CallInfer(ref_call,
Array<Layout>(nullptr),
old_in, input_shapes);
if (!success) { return Expr(nullptr); }
CHECK_EQ(old_in.size(), new_in.size());
// if new_in == 'undef': new_in = old_in
for (size_t i = 0; i < new_in.size(); ++i) {
if (!new_in[i].defined()) {
new_in.Set(i, old_in[i]);
}
}
// new_op = alter(op)
Call new_call = CallAlter(ref_call, normal_new_args);
// new_in2, new_out = op.infer(new_in)
if (new_call->op->IsInstance<OpNode>()) {
success = false;
std::tie(new_in2, new_out, success) = CallInfer(new_call, new_in, old_in, input_shapes);
if (!success) { return Expr(nullptr); }
} else {
return Expr(nullptr);
}
CHECK_EQ(new_out.size(), old_out.size())
<< "The number of output nodes should keep the same during alter_op_layout";
CHECK_EQ(new_in.size(), new_in2.size())
<< "The number of input nodes should keep the same during alter_op_layout";
// if (new_in != new_in2): insert transform (new_in -> new_in2)
Array<Expr> transformed_args;
size_t pt = 0;
for (auto arg : new_call->args) {
if (arg->IsInstance<TupleNode>()) { // unflatten tuple
Tuple tuple_arg = Downcast<Tuple>(arg);
std::vector<Expr> transformed_tuple_arg;
for (auto arg_item : tuple_arg->fields) {
transformed_tuple_arg.push_back(
memorizer.Transform(arg_item, new_in[pt], new_in2[pt]));
pt++;
}
transformed_args.push_back(TupleNode::make(transformed_tuple_arg));
} else {
transformed_args.push_back(
memorizer.Transform(arg, new_in[pt], new_in2[pt]));
pt++;
}
const CallNode* new_call = new_e.as<CallNode>();
CHECK(new_call) << "Can only replace the original operator with another call node";
return GetRef<Call>(new_call);
}
CHECK_EQ(pt, inputs.size());
// state[node] = (old_out, new_out)
// (handle tuple output)
if (ref_call->checked_type()->IsInstance<TupleTypeNode>()) {
Expr tuple_output = CallNode::make(new_call->op, transformed_args,
new_call->attrs);
Array<Expr> fields;
for (size_t i = 0; i < new_out.size(); ++i) {
auto rnode = make_node<LayoutAlternatedExprNode>();
rnode->value = TupleGetItemNode::make(tuple_output, i);
rnode->old_layout = old_out[i];
rnode->new_layout = new_out[i];
rnode->memorizer = memorizer;
fields.push_back(Expr(rnode));
}
return TupleNode::make(fields);
} else {
auto rnode = make_node<LayoutAlternatedExprNode>();
CHECK_EQ(new_out.size(), 1);
rnode->value = CallNode::make(new_call->op, transformed_args,
new_call->attrs);
rnode->old_layout = old_out[0];
rnode->new_layout = new_out[0];
rnode->memorizer = memorizer;
return Expr(rnode);
}
}
using ContainerType = AlterTransformMemorizerNode;
};
// Limiations:
// 1. the altered op should have the same number of arguments as the previous one
// 2. do not support nested tuple arguments
/*!
* Limitations:
* 1. The altered op should have the same number of arguments as the previous one.
* 2. Do not support nested tuple arguments.
*/
Expr AlterOpLayout(const Expr& expr) {
TransformMemorizer transformMemorizer(make_node<TransformMemorizerNode>());
auto fcontext = [&](const Call& call) -> NodeRef{
return transformMemorizer;
};
AlterTransformMemorizer alterMemorizer(make_node<AlterTransformMemorizerNode>());
auto fcontext = [&](const Call& call) -> NodeRef { return alterMemorizer; };
return ForwardRewrite(expr, AlterOpLayoutRewrite, fcontext);
return ForwardRewrite(expr, LayoutRewriter<AlterTransformMemorizer>, fcontext);
}
} // namespace alter_op_layout
......
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file convert_op_layout.cc
* \brief Alternate the layouts of operators or replace primitive operators with
other expressions. This pass can be used for computing convolution in
custom layouts or other general weight pre-transformation.
*/
#include <tvm/relay/analysis.h>
#include <tvm/relay/transform.h>
#include <tvm/relay/op_attr_types.h>
#include <tvm/relay/attrs/transform.h>
#include <tvm/relay/transform.h>
#include <tvm/operation.h>
#include <tuple>
#include <vector>
#include <functional>
#include <string>
#include <utility>
#include <unordered_map>
#include "transform_layout.h"
#include "pattern_util.h"
namespace tvm {
namespace relay {
namespace convert_op_layout {
/*!
* \brief Container for the transformations for ConvertLayout.
*/
class ConvertTransformMemorizerNode : public TransformMemorizerNode {
public:
/*!
* \brief Initializes the desired_layout.
* \param desired_layout The desired layout.
*/
explicit ConvertTransformMemorizerNode(const std::string& desired_layout)
: desired_layout_(desired_layout) {}
/*! \brief The desired layout for the Convert Layout pass */
std::string desired_layout_;
};
/*!
* \brief Container that provides the transformation function for convert layout.
*/
class ConvertTransformMemorizer : public TransformMemorizer {
public:
ConvertTransformMemorizer() {}
explicit ConvertTransformMemorizer(ObjectPtr<Object> n) : TransformMemorizer(n) {}
ConvertTransformMemorizerNode* operator->() {
return static_cast<ConvertTransformMemorizerNode*>(get_mutable());
}
/*!
* \brief Defines the call transformation for ConvertLayout pass. The new layouts should be the
* desired layout as specified by the user.
* \param ref_call The original call.
* \param new_args The traversed/recursed args to the call.
* \return The new Call after calling the packed func.
*/
Call CallWithNewLayouts(const Call& ref_call, const std::vector<Expr>& new_args) override {
static auto fconvert_layout = Op::GetAttr<FTVMConvertOpLayout>("FTVMConvertOpLayout");
Op op = Downcast<Op>(ref_call->op);
Expr new_e;
bool modified = false;
if (fconvert_layout.count(op)) {
tvm::Array<tvm::Tensor> tinfos;
for (auto expr : ref_call->args) {
auto ttype = expr->type_as<TensorTypeNode>();
tinfos.push_back(tvm::placeholder(ttype->shape, ttype->dtype));
}
Expr altered_value =
fconvert_layout[op](ref_call->attrs, new_args, tinfos, operator->()->desired_layout_);
if (altered_value.defined()) {
new_e = altered_value;
modified = true;
}
}
if (!modified) {
new_e = CallNode::make(ref_call->op, new_args, ref_call->attrs);
}
const CallNode* new_call = new_e.as<CallNode>();
CHECK(new_call) << "Can only replace the original operator with another call node";
return GetRef<Call>(new_call);
}
using ContainerType = ConvertTransformMemorizerNode;
};
/*!
* Limitations:
* 1. The altered op should have the same number of arguments as the previous one.
* 2. Do not support nested tuple arguments.
*/
Expr ConvertLayout(const Expr& expr, const std::string& desired_layout) {
ConvertTransformMemorizer transformMemorizer(
make_node<ConvertTransformMemorizerNode>(desired_layout));
auto fcontext = [&](const Call& call) -> NodeRef { return transformMemorizer; };
return ForwardRewrite(expr, LayoutRewriter<ConvertTransformMemorizer>, fcontext);
}
} // namespace convert_op_layout
namespace transform {
Pass ConvertLayout(const std::string& desired_layout) {
runtime::TypedPackedFunc<Function(Function, Module, PassContext)> pass_func =
[=](Function f, Module m, PassContext pc) {
return Downcast<Function>(relay::convert_op_layout::ConvertLayout(f, desired_layout));
};
return CreateFunctionPass(
pass_func, 3, "ConvertLayout",
{ir::StringImm::make("InferType"), ir::StringImm::make("SimplifyInference"),
ir::StringImm::make("CanonicalizeOps")});
}
TVM_REGISTER_API("relay._transform.ConvertLayout").set_body_typed(ConvertLayout);
} // namespace transform
} // namespace relay
} // namespace tvm
......@@ -18,18 +18,20 @@
*/
/*!
* \file alter_op_layout.h
* \brief Alternate the layouts of operators or replace primitive operators with
* \file infer_layout_util.h
* \brief Utility functions to alter the layouts of operators or replace primitive operators with
other expressions. This pass can be used for computing convolution in
custom layouts or other general weight pre-transformation.
*/
#ifndef TVM_RELAY_PASS_ALTER_OP_LAYOUT_H_
#define TVM_RELAY_PASS_ALTER_OP_LAYOUT_H_
#ifndef TVM_RELAY_PASS_INFER_LAYOUT_UTIL_H_
#define TVM_RELAY_PASS_INFER_LAYOUT_UTIL_H_
#include <tvm/data_layout.h>
#include <tvm/relay/expr.h>
#include <string>
#include <tuple>
#include "pattern_util.h"
namespace tvm {
namespace relay {
......@@ -193,7 +195,40 @@ inline Array<Array<Layout> > BinaryBroadcastLayout(const Attrs& attrs,
}
}
/*!
* Call registered FInferCorrectLayout of an op.
* Parameters are the same as the parameters for FInferCorrectLayout
* Returns inferred_input_layout, inferred_output_layout, success
*/
static inline std::tuple<Array<Layout>, Array<Layout>, bool> InferCorrectLayouts(
const Call& call, const Array<Layout>& new_in_layouts, const Array<Layout>& old_in_layouts,
const Array<Array<IndexExpr>>& old_in_shapes) {
static auto finfer_layout = Op::GetAttr<FInferCorrectLayout>("FInferCorrectLayout");
if (!call->op.as<OpNode>()) {
return std::make_tuple<>(Array<Layout>(nullptr), Array<Layout>(nullptr), false);
}
Op op = Downcast<Op>(call->op);
if (finfer_layout.count(op)) {
Array<Array<Layout>> inferred_layouts;
inferred_layouts =
finfer_layout[op](call->attrs, new_in_layouts, old_in_layouts, old_in_shapes);
CHECK_EQ(inferred_layouts.size(), 2)
<< "FInferCorrectLayout should return an array with size of 2";
for (auto x : inferred_layouts) {
for (auto y : x) {
if (!y.defined()) { // inference fails
return std::make_tuple<>(Array<Layout>(nullptr), Array<Layout>(nullptr), false);
}
}
}
return std::make_tuple<>(inferred_layouts[0], inferred_layouts[1], true);
} else {
return std::make_tuple<>(Array<Layout>(nullptr), Array<Layout>(nullptr), false);
}
}
} // namespace relay
} // namespace tvm
#endif // TVM_RELAY_PASS_ALTER_OP_LAYOUT_H_
#endif // TVM_RELAY_PASS_INFER_LAYOUT_UTIL_H_
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
*
* \file transform_layout.h
* \brief Common infrastructure for transforming the layouts. This is used for AlterOpLayout and
* ConvertLayout pass. */
#ifndef TVM_RELAY_PASS_TRANSFORM_LAYOUT_H_
#define TVM_RELAY_PASS_TRANSFORM_LAYOUT_H_
#include <tvm/data_layout.h>
#include <tvm/relay/expr.h>
#include <string>
#include <unordered_map>
#include <tuple>
#include <vector>
#include "pattern_util.h"
#include "infer_layout_util.h"
namespace tvm {
namespace relay {
/*!
* \brief Memorizes layout transformations to reuse.
*/
class TransformMemorizerNode : public Node {
public:
/*! \brief The key for the memorizer map is (Expr, src_layout, dst_layout). */
using TransformKey = std::tuple<const Node*, std::string, std::string>;
struct key_hash : public std::function<std::size_t(TransformKey)> {
std::size_t operator()(const TransformKey& k) const {
return dmlc::HashCombine<std::string>(
dmlc::HashCombine<std::string>(std::hash<const Node*>()(std::get<0>(k)), std::get<1>(k)),
(std::get<2>(k)));
}
};
/*! \brief The memorizer map. */
std::unordered_map<TransformKey, Expr, key_hash> memo;
static constexpr const char* _type_key = "relay.alter_op_layout.TransformMemorizerNode";
TVM_DECLARE_NODE_TYPE_INFO(TransformMemorizerNode, Node);
};
/*!
* \brief Container that transforms the layouts and memorizes them.
*/
class TransformMemorizer : public NodeRef {
public:
TransformMemorizer() {}
explicit TransformMemorizer(ObjectPtr<Object> n) : NodeRef(n) {}
TransformMemorizerNode* operator->() {
return static_cast<TransformMemorizerNode*>(get_mutable());
}
/*
* \brief Memorizes and transforms the layout.
* \param expr The initial expr.
* \param src_layout The source layout.
* \param dst_layout The dest layout.
* \return The new expr with the dst layout.
*/
Expr Transform(Expr raw, const Layout& src_layout, const Layout& dst_layout) {
if (src_layout.Equals(dst_layout)) {
return raw;
}
std::tuple<const Node*, std::string, std::string> key =
std::make_tuple<>(raw.get(), src_layout.name(), dst_layout.name());
auto& memo = operator->()->memo;
auto iter = memo.find(key);
if (iter != memo.end()) {
return iter->second;
} else {
Expr transform = TransformHelper(raw, src_layout, dst_layout);
memo[key] = transform;
return transform;
}
}
/*
* \brief Helper to transform the layouts.
* \param expr The initial expr.
* \param src_layout The source layout.
* \param dst_layout The dest layout.
* \return The new expr with the dst layout.
* \note It performs following 2 operations
* 1) If src_layout ndim is smaller then dst_layout, expand_dim is inserted to match the dim
* size. For example, src_layout = C, dst_layout = NCHW16c. The src is expanded to NHWC.
* 2) Call layout transform with new src layout.
*/
Expr TransformHelper(Expr raw, Layout src_layout, Layout dst_layout) {
if (src_layout.Equals(dst_layout)) {
return raw;
}
// 1) Check if the shape lengths are different. If yes, expand dims.
Expr input_expr = raw;
Layout new_src_layout = src_layout;
if (src_layout.ndim_primal() < dst_layout.ndim_primal()) {
int num_new_axis = dst_layout.ndim_primal() - src_layout.ndim_primal();
new_src_layout = src_layout.ExpandPrimal(dst_layout);
input_expr = MakeExpandDims(input_expr, 0, num_new_axis);
if (new_src_layout.Equals(dst_layout)) {
return input_expr;
}
}
// 2) Insert layout transform on the transformed src.
CHECK(new_src_layout.defined() && dst_layout.defined())
<< "Cannot insert layout transform because there are undefined layouts";
CHECK(BijectiveLayoutNode::make(new_src_layout, dst_layout).defined())
<< "Cannot insert layout transform because there are inconvertible layouts: "
<< new_src_layout << " v.s. " << dst_layout;
return MakeLayoutTransform(input_expr, new_src_layout.name(), dst_layout.name());
}
/*!
* \brief Defines the call transformation for derived passes. The new layouts are defined by
* used for different targets using a packed func.
* \param ref_call The original call.
* \param new_args The traversed/recursed args to the call.
* \return The new Call after calling the packed func.
*/
virtual Call CallWithNewLayouts(const Call& ref_call, const std::vector<Expr>& new_args) = 0;
using ContainerType = TransformMemorizerNode;
};
/*
* \brief TempExprNode during layout transform. Instance of this expr will be Realized to normal
* expr ultimately.
* \tparam TransformMemorizerT The derived TransformMemorizer type.
*/
template <class TransformMemorizerT>
class LayoutAlternatedExprNode : public TempExprNode {
public:
Expr value;
Layout old_layout;
Layout new_layout;
TransformMemorizerT memorizer;
Expr Realize() const final {
// NOTE: use a copy to discard the "const" qualifier
TransformMemorizerT tmp_memorizer = memorizer;
// fallback to old layout
return tmp_memorizer.Transform(value, new_layout, old_layout);
}
void VisitAttrs(AttrVisitor* v) {
v->Visit("value", &value);
v->Visit("old_layout", &old_layout);
v->Visit("new_layout", &new_layout);
}
static constexpr const char* _type_key = "relay.alter_op_layout.LayoutAlternatedExprNode";
TVM_DECLARE_NODE_TYPE_INFO(LayoutAlternatedExprNode, TempExprNode);
};
/*!
* \brief Container for the layout alternated expr.
* \tparam TransformMemorizerT The derived TransformMemorizer type.
*/
template <class TransformMemorizerT>
class LayoutAlternatedExpr : public NodeRef {
public:
LayoutAlternatedExpr() {}
explicit LayoutAlternatedExpr(ObjectPtr<Object> n) : NodeRef(n) {}
LayoutAlternatedExprNode<TransformMemorizerT>* operator->() {
return static_cast<LayoutAlternatedExprNode<TransformMemorizerT>*>(get_mutable());
}
using ContainerType = LayoutAlternatedExprNode<TransformMemorizerT>;
};
/*
* \brief Used with ForwardRewrite to transform the expr. The input args are same as
* FForwardRewrite.
* \param ref_call The reference old call type to be rewritten.
* We can make use of the op and type information.
* \param new_args The new arguments (some of them could be TempExpr).
* \param ctx Optional context information about ref_call.
* \tparam TransformMemorizerT The derived TransformMemorizer type.
* \return The rewriten result call, can also return nullptr,
* which indicate the rewriter should use the default fallback
* rule that realizes all its input and compose the call.
*
* \note The ctx can be used to provide extra information during transformation. The ctx is
* templated to reuse across AlterOpLayout and ConvertLayout pass. The steps are
* - Extract the original layouts.
* - Use ctx transformation to get a Call with new layouts - CallWithNewLayouts.
* - Extract the new layouts from the returned Call.
* - Transform the original call to reuse the new layouts using TransformMemorizer.
*/
template <class TransformMemorizerT>
Expr LayoutRewriter(const Call& ref_call, const Array<Expr>& new_args, const NodeRef& ctx) {
std::vector<LayoutAlternatedExpr<TransformMemorizerT>> inputs;
std::vector<Expr> normal_new_args;
Array<Array<IndexExpr>> input_shapes;
// NOTE: discard the "const" qualifier
// TransformMemorizer memorizer = Downcast<TransformMemorizer>(ctx);
// TransformMemorizerT* ctx_transformer =
// static_cast<TransformMemorizerT*>(memorizer.operator->());
TransformMemorizerT memorizer = Downcast<TransformMemorizerT>(ctx);
// fill incomplete state and flatten tuple
auto push_back_one_arg = [&inputs, memorizer](Expr arg) {
// We always expect LayoutAlternatedExpr<TransformMemorizerT>.
// This is used to convert the normal Expr to LayoutAlternatedExpr<TransformMemorizerT>.
if (const LayoutAlternatedExprNode<TransformMemorizerT>* inp =
arg.as<LayoutAlternatedExprNode<TransformMemorizerT>>()) {
inputs.push_back(GetRef<LayoutAlternatedExpr<TransformMemorizerT>>(inp));
return inp->value;
} else {
auto inode = make_node<LayoutAlternatedExprNode<TransformMemorizerT>>();
inode->value = arg;
inode->memorizer = memorizer;
inputs.push_back(LayoutAlternatedExpr<TransformMemorizerT>(inode));
return arg;
}
};
for (auto new_arg : new_args) {
// NOTE: do not support nested tuple
if (new_arg->IsInstance<TupleNode>()) {
Tuple tuple_new_arg = Downcast<Tuple>(new_arg);
std::vector<Expr> fields;
for (auto x : tuple_new_arg->fields) {
Expr tmp = push_back_one_arg(x);
fields.push_back(tmp);
}
normal_new_args.push_back(TupleNode::make(fields));
} else {
Expr tmp = push_back_one_arg(new_arg);
normal_new_args.push_back(tmp);
}
}
// old_in, new_in = state[inputs]
Array<Layout> old_in, old_out, new_in, new_out, new_in2;
for (auto inp : inputs) {
old_in.push_back(inp->old_layout);
new_in.push_back(inp->new_layout);
}
for (auto arg : ref_call->args) {
if (arg->IsInstance<TupleNode>()) { // flatten tuple
Tuple tuple_arg = Downcast<Tuple>(arg);
for (auto x : tuple_arg->fields) {
input_shapes.push_back(x->type_as<TensorTypeNode>()->shape);
}
} else {
input_shapes.push_back(arg->type_as<TensorTypeNode>()->shape);
}
}
// old_in, old_out = op.infer(old_in)
bool success = false;
std::tie(old_in, old_out, success) =
InferCorrectLayouts(ref_call, Array<Layout>(nullptr), old_in, input_shapes);
if (!success) {
return Expr(nullptr);
}
CHECK_EQ(old_in.size(), new_in.size());
// if new_in == 'undef': new_in = old_in
for (size_t i = 0; i < new_in.size(); ++i) {
if (!new_in[i].defined()) {
new_in.Set(i, old_in[i]);
}
}
// new_op = alter(op)
Call new_call = memorizer.CallWithNewLayouts(ref_call, normal_new_args);
// new_in2, new_out = op.infer(new_in)
if (new_call->op->IsInstance<OpNode>()) {
success = false;
std::tie(new_in2, new_out, success) =
InferCorrectLayouts(new_call, new_in, old_in, input_shapes);
if (!success) {
return Expr(nullptr);
}
} else {
return Expr(nullptr);
}
CHECK_EQ(new_out.size(), old_out.size())
<< "The number of output nodes should keep the same during alter_op_layout";
CHECK_EQ(new_in.size(), new_in2.size())
<< "The number of input nodes should keep the same during alter_op_layout";
// if (new_in != new_in2): insert transform (new_in -> new_in2)
Array<Expr> transformed_args;
size_t pt = 0;
for (auto arg : new_call->args) {
if (arg->IsInstance<TupleNode>()) { // unflatten tuple
Tuple tuple_arg = Downcast<Tuple>(arg);
std::vector<Expr> transformed_tuple_arg;
for (auto arg_item : tuple_arg->fields) {
transformed_tuple_arg.push_back(memorizer.Transform(arg_item, new_in[pt], new_in2[pt]));
pt++;
}
transformed_args.push_back(TupleNode::make(transformed_tuple_arg));
} else {
transformed_args.push_back(memorizer.Transform(arg, new_in[pt], new_in2[pt]));
pt++;
}
}
CHECK_EQ(pt, inputs.size());
// state[node] = (old_out, new_out)
// (handle tuple output)
if (ref_call->checked_type()->IsInstance<TupleTypeNode>()) {
Expr tuple_output = CallNode::make(new_call->op, transformed_args, new_call->attrs);
Array<Expr> fields;
for (size_t i = 0; i < new_out.size(); ++i) {
auto rnode = make_node<LayoutAlternatedExprNode<TransformMemorizerT>>();
rnode->value = TupleGetItemNode::make(tuple_output, i);
rnode->old_layout = old_out[i];
rnode->new_layout = new_out[i];
rnode->memorizer = memorizer;
fields.push_back(Expr(rnode));
}
return TupleNode::make(fields);
} else {
auto rnode = make_node<LayoutAlternatedExprNode<TransformMemorizerT>>();
CHECK_EQ(new_out.size(), 1);
rnode->value = CallNode::make(new_call->op, transformed_args, new_call->attrs);
rnode->old_layout = old_out[0];
rnode->new_layout = new_out[0];
rnode->memorizer = memorizer;
return Expr(rnode);
}
}
} // namespace relay
} // namespace tvm
#endif // TVM_RELAY_PASS_TRANSFORM_LAYOUT_H_
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Test alter op layout pass"""
import tvm
from tvm import relay
from tvm.relay.op import register_alter_op_layout
from tvm.relay import transform, analysis
def run_opt_pass(expr, passes):
passes = passes if isinstance(passes, list) else [passes]
mod = relay.Module.from_expr(expr)
seq = transform.Sequential(passes)
with transform.PassContext(opt_level=3):
mod = seq(mod)
entry = mod["main"]
return entry if isinstance(expr, relay.Function) else entry.body
def test_no_convert_layout():
def before():
x = relay.var("x", shape=(1, 64, 56, 56))
weight = relay.var('weight', shape=(64, 64, 3, 3))
y = relay.nn.conv2d(x, weight,
channels=64,
kernel_size=(3, 3),
padding=(1, 1))
y = relay.nn.relu(y)
y = relay.Function([x, weight], y)
return y
def expected():
return before()
a = before()
a = run_opt_pass(a, transform.ConvertLayout('NCHW'))
b = run_opt_pass(expected(), transform.InferType())
assert analysis.alpha_equal(a, b), "Actual = \n" + str(a)
def test_conv_convert_layout():
def before():
x = relay.var("x", shape=(1, 56, 56, 64))
weight = relay.var('weight', shape=(3, 3, 64, 64))
y = relay.nn.conv2d(x, weight,
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout='NHWC',
kernel_layout='HWIO')
y = relay.nn.relu(y)
y = relay.Function([x, weight], y)
return y
def expected():
x = relay.var("x", shape=(1, 56, 56, 64))
weight = relay.var('weight', shape=(3, 3, 64, 64))
x = relay.layout_transform(x, 'NHWC', 'NCHW')
weight = relay.layout_transform(weight, 'HWIO', 'OIHW')
y = relay.nn.conv2d(x, weight,
channels=64,
kernel_size=(3, 3),
padding=(1, 1))
y = relay.nn.relu(y)
y = relay.layout_transform(y, 'NCHW', 'NHWC')
y = relay.Function(relay.analysis.free_vars(y), y)
return y
a = before()
a = run_opt_pass(a, transform.ConvertLayout('NCHW'))
b = run_opt_pass(expected(), transform.InferType())
assert analysis.alpha_equal(a, b), "Actual = \n" + str(a)
def test_conv_bias_pool_convert_layout():
def before():
x = relay.var("x", shape=(1, 56, 56, 64))
bias = relay.var("bias", shape=(64,))
weight = relay.var("weight", shape=(3, 3, 64, 64))
y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1),
data_layout='NHWC', kernel_layout='HWIO')
y = relay.nn.bias_add(y, bias, axis=3)
# a useless tuple, which will be eliminated
y = relay.Tuple([y])[0]
y = relay.nn.relu(y)
y = relay.nn.max_pool2d(y, pool_size=(2, 2), layout='NHWC')
y = relay.cast(y, 'int32')
y = relay.nn.batch_flatten(y)
y = relay.Function(analysis.free_vars(y), y)
return y
def expected():
x = relay.var("x", shape=(1, 56, 56, 64))
bias = relay.var("bias", shape=(64,))
weight = relay.var("weight", shape=(3, 3, 64, 64))
x = relay.layout_transform(x, 'NHWC', 'NCHW')
weight = relay.layout_transform(weight, 'HWIO', 'OIHW')
y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1))
bias = relay.expand_dims(bias, axis=0, num_newaxis=3)
bias = relay.layout_transform(bias, 'NHWC', 'NCHW')
y = relay.add(y, bias)
# a useless tuple, which will be eliminated
y = relay.Tuple([y])[0]
y = relay.nn.relu(y)
y = relay.nn.max_pool2d(y, pool_size=(2, 2))
y = relay.cast(y, 'int32')
y = relay.layout_transform(y, 'NCHW', 'NHWC')
y = relay.nn.batch_flatten(y)
y = relay.Function(analysis.free_vars(y), y)
return y
a = before()
a = run_opt_pass(a, transform.ConvertLayout('NCHW'))
b = run_opt_pass(expected(), transform.InferType())
assert analysis.alpha_equal(a, b), "Actual = \n" + str(a)
def test_conv_concat_convert_layout():
def before():
x = relay.var("x", shape=(1, 56, 56, 64))
weight1 = relay.var('weight1', shape=(3, 3, 64, 64))
weight2 = relay.var('weight2', shape=(3, 3, 64, 64))
y = relay.nn.conv2d(x, weight1,
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout='NHWC',
kernel_layout='HWIO')
y1 = relay.nn.conv2d(y, weight2,
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout='NHWC',
kernel_layout='HWIO')
ret = relay.concatenate([y, y1], axis=3)
y = relay.Function(analysis.free_vars(ret), ret)
return y
def expected():
x = relay.var("x", shape=(1, 56, 56, 64))
weight1 = relay.var('weight1', shape=(3, 3, 64, 64))
weight2 = relay.var('weight2', shape=(3, 3, 64, 64))
weight1 = relay.layout_transform(weight1, 'HWIO', 'OIHW')
weight2 = relay.layout_transform(weight2, 'HWIO', 'OIHW')
y = relay.layout_transform(x, "NHWC", "NCHW")
y = relay.nn.conv2d(y, weight1,
channels=64,
kernel_size=(3, 3),
padding=(1, 1))
y1 = relay.nn.conv2d(y, weight2,
channels=64,
kernel_size=(3, 3),
padding=(1, 1))
ret = relay.concatenate([y, y1], axis=1)
ret = relay.layout_transform(ret, "NCHW", "NHWC")
y = relay.Function(analysis.free_vars(ret), ret)
return y
a = before()
a = run_opt_pass(a, transform.ConvertLayout('NCHW'))
b = run_opt_pass(expected(), transform.InferType())
assert analysis.alpha_equal(a, b), "Actual = \n" + str(a)
def test_dual_path_convert_layout():
def before():
x = relay.var("x", shape=(1, 56, 56, 64))
weight1 = relay.var('weight1', shape=(3, 3, 64, 32))
weight2 = relay.var('weight2', shape=(3, 3, 32, 32))
y = relay.nn.conv2d(x, weight1,
channels=32,
kernel_size=(3, 3),
padding=(1, 1),
data_layout='NHWC',
kernel_layout='HWIO')
y = relay.nn.relu(y)
y1 = relay.nn.conv2d(y, weight2,
channels=32,
kernel_size=(3, 3),
padding=(1, 1),
data_layout='NHWC',
kernel_layout='HWIO')
y1 = relay.nn.relu(y1)
y2 = relay.nn.batch_flatten(y)
ret = relay.Tuple([y1, y2])
y = relay.Function(analysis.free_vars(ret), ret)
return y
def expected():
x = relay.var("x", shape=(1, 56, 56, 64))
weight1 = relay.var('weight1', shape=(3, 3, 64, 32))
weight2 = relay.var('weight2', shape=(3, 3, 32, 32))
weight1 = relay.layout_transform(weight1, 'HWIO', 'OIHW')
weight2 = relay.layout_transform(weight2, 'HWIO', 'OIHW')
y = relay.layout_transform(x, "NHWC", "NCHW")
y = relay.nn.conv2d(y, weight1,
channels=32,
kernel_size=(3, 3),
padding=(1, 1))
y = relay.nn.relu(y)
y1 = relay.nn.conv2d(y, weight2,
channels=32,
kernel_size=(3, 3),
padding=(1, 1))
y1 = relay.nn.relu(y1)
y1 = relay.layout_transform(y1, "NCHW", "NHWC")
y2 = relay.layout_transform(y, "NCHW", "NHWC")
y2 = relay.nn.batch_flatten(y2)
ret = relay.Tuple([y1, y2])
y = relay.Function(analysis.free_vars(ret), ret)
return y
a = before()
a = run_opt_pass(a, transform.ConvertLayout('NCHW'))
b = run_opt_pass(expected(), transform.InferType())
assert analysis.alpha_equal(a, b), "Actual = \n" + str(a)
def test_bn_convert_layout():
def before():
x = relay.var("x", shape=(1, 56, 56, 64))
weight1 = relay.var('weight1', shape=(3, 3, 64, 32))
y = relay.nn.conv2d(x, weight1,
channels=32,
kernel_size=(3, 3),
padding=(1, 1),
data_layout='NHWC',
kernel_layout='HWIO')
gamma = relay.var("gamma")
beta = relay.var("beta")
mean = relay.var("mean")
variance = relay.var("variance")
y, _, _ = relay.nn.batch_norm(y , gamma, beta, mean, variance, axis=3)
return relay.Function(analysis.free_vars(y), y)
a = before()
a = run_opt_pass(a, transform.ConvertLayout('NCHW'))
# Check that there is only 1 NHWC to NCHW transform.
has_lt = list()
find_op = lambda x : \
has_lt.append(isinstance(x, tvm.relay.expr.Call) and x.op.name == "layout_transform" \
and x.attrs.src_layout == 'NCHW' and x.attrs.dst_layout == 'NHWC')
relay.analysis.post_order_visit(a, find_op)
has_lt = list(filter(lambda x: x, has_lt))
assert len(has_lt) == 1
def test_resnet_convert_layout():
def before():
x = relay.var("x", shape=(1, 56, 56, 64))
weight1 = relay.var('weight1', shape=(3, 3, 64, 32))
weight2 = relay.var('weight2', shape=(1, 1, 64, 32))
y = relay.nn.conv2d(x, weight1,
channels=32,
kernel_size=(3, 3),
padding=(1, 1),
data_layout='NHWC',
kernel_layout='HWIO')
y = relay.nn.relu(y)
y2 = relay.nn.conv2d(x, weight2,
channels=32,
kernel_size=(1, 1),
data_layout='NHWC',
kernel_layout='HWIO')
y2 = relay.nn.relu(y2)
y = y + y2
y = relay.nn.global_max_pool2d(y, layout='NHWC')
return relay.Function(analysis.free_vars(y), y)
def expected():
x = relay.var("x", shape=(1,56, 56, 64))
weight1 = relay.var('weight1', shape=(3, 3, 64, 32))
weight2 = relay.var('weight2', shape=(1, 1, 64, 32))
weight1 = relay.layout_transform(weight1, 'HWIO', 'OIHW')
weight2 = relay.layout_transform(weight2, 'HWIO', 'OIHW')
x = relay.layout_transform(x, "NHWC", "NCHW")
y = relay.nn.conv2d(x, weight1,
channels=32,
kernel_size=(3, 3),
padding=(1, 1))
y = relay.nn.relu(y)
y2 = relay.nn.conv2d(x, weight2,
channels=32,
kernel_size=(1, 1))
y2 = relay.nn.relu(y2)
y = y + y2
y = relay.nn.global_max_pool2d(y)
y = relay.layout_transform(y, "NCHW", "NHWC")
return relay.Function(analysis.free_vars(y), y)
a = before()
a = run_opt_pass(a, transform.ConvertLayout('NCHW'))
b = run_opt_pass(expected(), transform.InferType())
assert analysis.alpha_equal(a, b), "Actual = \n" + str(a)
def test_scalar_convert_layout():
def before():
x = relay.var("x", shape=(1, 56, 56, 64))
weight = relay.var("weight", shape=(3, 3, 64, 64))
y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1),
data_layout='NHWC', kernel_layout='HWIO')
y = relay.add(y, relay.const(1, "float32"))
y = relay.Function(analysis.free_vars(y), y)
return y
def expected():
x = relay.var("x", shape=(1, 56, 56, 64))
w = relay.var("weight", shape=(3, 3, 64, 64))
x = relay.layout_transform(x, 'NHWC', 'NCHW')
w = relay.layout_transform(w, 'HWIO', 'OIHW')
y = relay.nn.conv2d(x, w,
channels=64,
kernel_size=(3, 3),
padding=(1, 1))
y = relay.add(y, relay.const(1.0, "float32"))
y = relay.layout_transform(y, "NCHW", "NHWC")
y = relay.Function(analysis.free_vars(y), y)
return y
a = before()
a = run_opt_pass(a, transform.ConvertLayout('NCHW'))
b = run_opt_pass(expected(), transform.InferType())
assert analysis.alpha_equal(a, b), "Actual = \n" + str(a)
if __name__ == "__main__":
test_no_convert_layout()
test_conv_convert_layout()
test_conv_bias_pool_convert_layout()
test_conv_concat_convert_layout()
test_dual_path_convert_layout()
test_bn_convert_layout()
test_resnet_convert_layout()
test_scalar_convert_layout()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment