Unverified Commit 6ab15806 by Thierry Moreau Committed by GitHub

[VTA] Bringing group convolution support (#4421)

* group conv operator support for VTA

* autotvm tuning script for group conv2d

* lint fix

* lint fix

* lint fix

* addressing comments
parent 5fe5ceee
......@@ -22,5 +22,6 @@ from .graphpack import graph_pack
from . import op
from . import vta_conv2d
from . import vta_conv2d_transpose
from . import vta_group_conv2d
from . import vta_dense
from . import util
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Group conv2D operator declaration and schedule registration for VTA."""
import numpy as np
import tvm
from tvm import autotvm
import topi
from ..environment import get_env
@autotvm.register_topi_compute(topi.nn.group_conv2d_nchw, 'vta', 'direct')
def packed_group_conv2d(cfg,
data,
kernel,
strides,
padding,
dilation,
group,
out_dtype):
""" Packed group conv2d nchw function."""
assert dilation == (1, 1)
if padding[0]:
pad_data = topi.nn.pad(data, [0, 0, padding[0], padding[1], 0, 0], name="pad_data")
else:
pad_data = data
assert len(data.shape) == 6
assert len(kernel.shape) == 6
assert data.dtype == "int8", data.dtype
assert kernel.dtype == "int8", kernel.dtype
assert out_dtype == "int32", out_dtype
oheight = topi.util.get_const_int((pad_data.shape[2] - kernel.shape[2]) // strides[0] + 1)
owidth = topi.util.get_const_int((pad_data.shape[3] - kernel.shape[3]) // strides[1] + 1)
oshape = (data.shape[0], kernel.shape[0], oheight, owidth, data.shape[4], kernel.shape[4])
ishape = topi.util.get_const_tuple(data.shape)
kshape = topi.util.get_const_tuple(kernel.shape)
assert group * kshape[1] == ishape[1]
assert kshape[0] % group == 0
d_i = tvm.reduce_axis((0, kshape[2]), name='d_i')
d_j = tvm.reduce_axis((0, kshape[3]), name='d_j')
k_o = tvm.reduce_axis((0, kshape[1]), name='k_o')
k_i = tvm.reduce_axis((0, kshape[-1]), name='k_i')
hstride, wstride = strides
out = tvm.compute(
oshape,
lambda b_o, c_o, i, j, b_i, c_i: tvm.sum(
pad_data[b_o, c_o // (kshape[0] // group) * kshape[1] + k_o, i * hstride + d_i,
j * wstride + d_j, b_i, k_i].astype(out_dtype) *
kernel[c_o, k_o, d_i, d_j, c_i, k_i].astype(out_dtype),
axis=[k_o, d_i, d_j, k_i]),
name="res", tag="packed_group_conv2d")
cfg.add_flop(2 * np.prod(topi.util.get_const_tuple(oshape)) *
kshape[2] * kshape[3] * ishape[1] * kshape[-1])
return out
@autotvm.register_topi_schedule(topi.generic.schedule_group_conv2d_nchw, 'vta', 'direct')
def schedule_packed_group_conv2d(cfg, outs):
""" Schedule the packed conv2d.
"""
assert len(outs) == 1
output = outs[0]
const_ops = []
ewise_inputs = []
ewise_ops = []
conv2d_res = []
assert output.dtype == "int8"
assert output.op.input_tensors[0].dtype == "int32"
def _traverse(op):
if topi.tag.is_broadcast(op.tag):
if not op.same_as(output.op):
if not op.axis:
const_ops.append(op)
else:
ewise_ops.append(op)
for tensor in op.input_tensors:
if isinstance(tensor.op, tvm.tensor.PlaceholderOp):
ewise_inputs.append((op, tensor))
else:
_traverse(tensor.op)
else:
assert op.tag == "packed_group_conv2d"
conv2d_res.append(op)
_traverse(output.op)
assert len(conv2d_res) == 1
conv2d_stage = conv2d_res[0].output(0)
s = tvm.create_schedule(output.op)
##### space definition begin #####
b, c_o, x_i, x_j, _, _ = s[conv2d_stage].op.axis
c_i, _, _, _ = s[conv2d_stage].op.reduce_axis
cfg.define_split('tile_b', b, num_outputs=2)
cfg.define_split('tile_h', x_i, num_outputs=2)
cfg.define_split('tile_w', x_j, num_outputs=2)
cfg.define_split('tile_ci', c_i, num_outputs=2)
cfg.define_split('tile_co', c_o, num_outputs=2)
cfg.define_knob('oc_nthread', [1, 2])
cfg.define_knob('h_nthread', [1, 2])
###### space definition end ######
data, kernel = conv2d_stage.op.input_tensors
if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag:
temp = data.op.input_tensors[0]
pad_data = data
data = temp
else:
pad_data = None
env = get_env()
# setup pad
if pad_data is not None:
cdata = pad_data
s[pad_data].set_scope(env.inp_scope)
else:
cdata = s.cache_read(data, env.inp_scope, [conv2d_stage])
ckernel = s.cache_read(kernel, env.wgt_scope, [conv2d_stage])
s[conv2d_stage].set_scope(env.acc_scope)
# cache read input
cache_read_ewise = []
for consumer, tensor in ewise_inputs:
cache_read_ewise.append(
s.cache_read(tensor, env.acc_scope, [consumer]))
# set ewise scope
for op in ewise_ops:
s[op].set_scope(env.acc_scope)
s[op].pragma(s[op].op.axis[0], env.alu)
for op in const_ops:
s[op].compute_inline()
# tile
x_bo, x_co, x_i, x_j, x_bi, x_ci = s[output].op.axis
x_co0, x_co1 = cfg['tile_co'].apply(s, output, x_co)
x_i0, x_i1 = cfg['tile_h'].apply(s, output, x_i)
x_j0, x_j1 = cfg['tile_w'].apply(s, output, x_j)
s[output].reorder(x_bo, x_i0, x_co0, x_j0, x_co1, x_i1, x_j1, x_bi, x_ci)
store_pt = x_j0
# set all compute scopes
s[conv2d_stage].compute_at(s[output], store_pt)
for op in ewise_ops:
s[op].compute_at(s[output], store_pt)
for tensor in cache_read_ewise:
s[tensor].compute_at(s[output], store_pt)
s[tensor].pragma(s[tensor].op.axis[0], env.dma_copy)
# virtual threading along output channel axes
if cfg['oc_nthread'].val > 1:
_, v_t = s[output].split(x_co0, factor=cfg['oc_nthread'].val)
s[output].reorder(v_t, x_bo)
s[output].bind(v_t, tvm.thread_axis("cthread"))
# virtual threading along spatial rows
if cfg['h_nthread'].val > 1:
_, v_t = s[output].split(x_i0, factor=cfg['h_nthread'].val)
s[output].reorder(v_t, x_bo)
s[output].bind(v_t, tvm.thread_axis("cthread"))
x_bo, x_co, x_i, x_j, x_bi, x_ci = s[conv2d_stage].op.axis
k_o, d_i, d_j, k_i = s[conv2d_stage].op.reduce_axis
s[conv2d_stage].reorder(x_bo, k_o, x_j, d_j, d_i, x_co, x_i, x_bi, x_ci, k_i)
k_o, _ = cfg['tile_ci'].apply(s, conv2d_stage, k_o)
s[cdata].compute_at(s[conv2d_stage], k_o)
s[ckernel].compute_at(s[conv2d_stage], k_o)
# Use VTA instructions
s[cdata].pragma(s[cdata].op.axis[0], env.dma_copy)
s[ckernel].pragma(s[ckernel].op.axis[0], env.dma_copy)
s[conv2d_stage].tensorize(x_bi, env.gemm)
s[output].pragma(x_co1, env.dma_copy)
return s
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Tuning a single group conv2d operator"""
from collections import namedtuple
import logging
import os
import tvm
from tvm import autotvm
from tvm.contrib.util import get_lower_ir
import topi
import vta
import vta.testing
env = vta.get_env()
Workload = namedtuple("GroupConv2DWorkload",
['batch', 'height', 'width', 'in_filter', 'out_filter', 'groups',
'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride'])
# Mobilenet (grouped variant) workloads
mobilenet_wkls = [
('mobilenet.D1', Workload(env.BATCH, 112, 112, 32, 32, 2, 3, 3, 1, 1, 1, 1)),
('mobilenet.D2', Workload(env.BATCH, 112, 112, 64, 64, 4, 3, 3, 1, 1, 2, 2)),
('mobilenet.D3', Workload(env.BATCH, 56, 56, 128, 128, 8, 3, 3, 1, 1, 1, 1)),
('mobilenet.D4', Workload(env.BATCH, 56, 56, 128, 128, 8, 3, 3, 1, 1, 2, 2)),
('mobilenet.D5', Workload(env.BATCH, 28, 28, 256, 256, 16, 3, 3, 1, 1, 1, 1)),
('mobilenet.D6', Workload(env.BATCH, 28, 28, 256, 256, 16, 3, 3, 1, 1, 2, 2)),
('mobilenet.D7', Workload(env.BATCH, 14, 14, 512, 512, 32, 3, 3, 1, 1, 1, 1)),
('mobilenet.D8', Workload(env.BATCH, 14, 14, 512, 512, 32, 3, 3, 1, 1, 2, 2)),
('mobilenet.D9', Workload(env.BATCH, 7, 7, 1024, 1024, 64, 3, 3, 1, 1, 1, 1)),
]
@tvm.tag_scope(tag=topi.tag.ELEMWISE)
def my_clip(x, a_min, a_max):
"""Unlike topi's current clip, put min and max into two stages."""
const_min = tvm.const(a_min, x.dtype)
const_max = tvm.const(a_max, x.dtype)
x = tvm.compute(x.shape, lambda *i: tvm.min(x(*i), const_max), name="clipA")
x = tvm.compute(x.shape, lambda *i: tvm.max(x(*i), const_min), name="clipB")
return x
def group_conv2d(N, CI, H, W, CO, KH, KW, strides, padding, dilation, group):
CI_G = CI // groups
data_shape = (N//env.BATCH, CI//env.BLOCK_IN, H, W, env.BATCH, env.BLOCK_IN)
kernel_shape = (CO//env.BLOCK_OUT, CI_G//env.BLOCK_IN, KH, KW, env.BLOCK_OUT, env.BLOCK_IN)
bias_shape = (N//env.BATCH, CO//env.BLOCK_OUT, 1, 1, env.BATCH, env.BLOCK_OUT)
data = tvm.placeholder(data_shape, name="data", dtype=env.inp_dtype)
kernel = tvm.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)
bias = tvm.placeholder(bias_shape, name="bias", dtype=env.acc_dtype)
with tvm.target.vta():
res = topi.nn.group_conv2d_nchw(
data,
kernel,
strides,
padding,
dilation,
groups,
env.acc_dtype)
res = topi.right_shift(res, env.WGT_WIDTH)
res = topi.add(res, bias)
res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
res = topi.cast(res, env.out_dtype)
if tvm.target.current_target().device_name == 'vta':
s = topi.generic.schedule_group_conv2d_nchw([res])
else:
s = tvm.create_schedule([res.op])
return s, [data, kernel, bias, res]
if __name__ == '__main__':
# Logging config (for printing tuning log to the screen)
logging.basicConfig()
# Tuning log files
log_file = "%s.group_conv2d.log" % (env.TARGET)
# create tmp log file
tmp_log_file = log_file + ".tmp"
if os.path.exists(log_file):
os.remove(log_file)
# Get tracker info from env
tracker_host = os.environ.get("TVM_TRACKER_HOST", None)
tracker_port = os.environ.get("TVM_TRACKER_PORT", None)
if not tracker_host or not tracker_port:
print("Set your AutoTVM tracker node host and port variables to run the autotuner")
exit()
for idx, (wl_name, wl) in enumerate(mobilenet_wkls):
prefix = "[Task %2d/%2d] " % (idx, len(mobilenet_wkls))
# Read in workload parameters
N = wl.batch
CI = wl.in_filter
H = wl.height
W = wl.width
CO = wl.out_filter
KH = wl.hkernel
KW = wl.wkernel
strides = (wl.hstride, wl.wstride)
padding = (wl.hpad, wl.wpad)
dilation = (1, 1)
groups = wl.groups
# Create task
task = autotvm.task.create(
group_conv2d,
args=(N, CI, H, W, CO, KH, KW, strides, padding, dilation, groups),
target=tvm.target.vta(),
target_host=env.target_host,
template_key='direct')
print(task.config_space)
# Tune
measure_option = autotvm.measure_option(
builder=autotvm.LocalBuilder(),
runner=autotvm.RPCRunner(
env.TARGET, host=tracker_host, port=int(tracker_port),
number=5, timeout=60,
check_correctness=True))
# Run Tuner
tuner = autotvm.tuner.RandomTuner(task)
tuner.tune(
n_trial=len(task.config_space),
early_stopping=None,
measure_option=measure_option,
callbacks=[
autotvm.callback.progress_bar(len(task.config_space), prefix=prefix),
autotvm.callback.log_to_file(tmp_log_file)])
# Pick best records to a cache file
autotvm.record.pick_best(tmp_log_file, log_file)
os.remove(tmp_log_file)
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Testing topi group conv2d operator for VTA"""
import json
import os
import numpy as np
from collections import namedtuple
import tvm
from tvm import autotvm
from tvm.contrib import util
import topi
import topi.testing
import vta
from vta import program_fpga, reconfig_runtime
import vta.testing
from vta.testing import simulator
Workload = namedtuple("GroupConv2DWorkload",
['batch', 'height', 'width', 'in_filter', 'out_filter', 'groups',
'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride'])
# Get batch info from env
env = vta.get_env()
# Mobilenet (grouped variant) workloads
mobilenet_wkls = [
('mobilenet.D1', Workload(env.BATCH, 112, 112, 32, 32, 2, 3, 3, 1, 1, 1, 1)),
('mobilenet.D2', Workload(env.BATCH, 112, 112, 64, 64, 4, 3, 3, 1, 1, 2, 2)),
('mobilenet.D3', Workload(env.BATCH, 56, 56, 128, 128, 8, 3, 3, 1, 1, 1, 1)),
('mobilenet.D4', Workload(env.BATCH, 56, 56, 128, 128, 8, 3, 3, 1, 1, 2, 2)),
('mobilenet.D5', Workload(env.BATCH, 28, 28, 256, 256, 16, 3, 3, 1, 1, 1, 1)),
('mobilenet.D6', Workload(env.BATCH, 28, 28, 256, 256, 16, 3, 3, 1, 1, 2, 2)),
('mobilenet.D7', Workload(env.BATCH, 14, 14, 512, 512, 32, 3, 3, 1, 1, 1, 1)),
('mobilenet.D8', Workload(env.BATCH, 14, 14, 512, 512, 32, 3, 3, 1, 1, 2, 2)),
('mobilenet.D9', Workload(env.BATCH, 7, 7, 1024, 1024, 64, 3, 3, 1, 1, 1, 1)),
]
# FIXME: we need a custom clip operator to circumvent a pattern detection limitation
@tvm.tag_scope(tag=topi.tag.ELEMWISE)
def my_clip(x, a_min, a_max):
"""Unlike topi's current clip, put min and max into two stages."""
const_min = tvm.const(a_min, x.dtype)
const_max = tvm.const(a_max, x.dtype)
x = tvm.compute(x.shape, lambda *i: tvm.min(x(*i), const_max), name="clipA")
x = tvm.compute(x.shape, lambda *i: tvm.max(x(*i), const_min), name="clipB")
return x
def run_group_conv2d(env, remote, wl, target,
check_correctness=True, print_ir=False,
samples=4):
# Workload assertions
assert wl.hpad == wl.wpad
# Perform packing only if we are targeting the accelerator
if "arm_cpu" in target.keys:
data_pack = False
layout = "NCHW"
elif "vta" in target.keys:
data_pack = True
layout = "NCHW%dn%dc" % (env.BATCH, env.BLOCK_IN)
# Derive shapes depending upon packing
CI_G = wl.in_filter // wl.groups
a_shape = (wl.batch, wl.in_filter, wl.height, wl.width)
w_shape = (wl.out_filter, CI_G, wl.hkernel, wl.wkernel)
b_shape = (wl.batch, wl.out_filter, 1, 1)
if data_pack:
data_shape = (wl.batch//env.BATCH, wl.in_filter//env.BLOCK_IN,
wl.height, wl.width, env.BATCH, env.BLOCK_IN)
kernel_shape = (wl.out_filter//env.BLOCK_OUT, CI_G//env.BLOCK_IN,
wl.hkernel, wl.wkernel, env.BLOCK_OUT, env.BLOCK_IN)
bias_shape = (wl.batch//env.BATCH, wl.out_filter//env.BLOCK_OUT,
1, 1, env.BATCH, env.BLOCK_OUT)
else:
data_shape = a_shape
kernel_shape = w_shape
bias_shape = b_shape
data = tvm.placeholder(data_shape, name="data", dtype=env.inp_dtype)
kernel = tvm.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)
bias = tvm.placeholder(bias_shape, name="bias", dtype=env.acc_dtype)
# Define base computation schedule
with target:
res = topi.nn.group_conv2d_nchw(
data, kernel, (wl.hstride, wl.wstride), (wl.hpad, wl.wpad), (1, 1),
wl.groups, env.acc_dtype)
res = topi.right_shift(res, 8)
res = topi.add(res, bias)
res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
res = topi.cast(res, env.out_dtype)
# Derive base schedule
s = topi.generic.schedule_group_conv2d_nchw([res])
if print_ir:
print(vta.lower(s, [data, kernel, bias, res], simple_mode=True))
# Derive number of ops
fout_height = (wl.height + 2 * wl.hpad - wl.hkernel) // wl.hstride + 1
fout_width = (wl.width + 2 * wl.wpad - wl.wkernel) // wl.wstride + 1
num_ops = 2 * wl.batch * fout_height * fout_width * wl.hkernel * wl.wkernel * \
wl.out_filter * wl.in_filter // wl.groups
def get_ref_data():
# derive min max for act, wgt, and bias types (max non inclusive)
a_min, a_max = 0 - (1 << (env.INP_WIDTH - 1)), (1 << (env.INP_WIDTH - 1))
w_min, w_max = 0 - (1 << (env.WGT_WIDTH - 1)), (1 << (env.WGT_WIDTH - 1))
b_min, b_max = 0 - 1 << (env.INP_WIDTH + env.WGT_WIDTH - 2), 1 << (env.INP_WIDTH + env.WGT_WIDTH - 2)
a_np = np.random.randint(a_min, a_max, size=a_shape).astype(data.dtype)
w_np = np.random.randint(w_min, w_max, size=w_shape).astype(kernel.dtype)
b_np = np.random.randint(b_min, b_max, size=b_shape).astype(env.acc_dtype)
r_np = topi.testing.conv2d_nchw_python(
a_np.astype(env.acc_dtype), w_np.astype(env.acc_dtype),
(wl.hstride, wl.wstride), wl.hpad, wl.groups).astype(env.acc_dtype)
return a_np, w_np, b_np, r_np
# Data in original format
data_np, kernel_np, bias_np, res_ref = get_ref_data()
if data_pack:
data_np = data_np.reshape(
wl.batch//env.BATCH, env.BATCH,
wl.in_filter//env.BLOCK_IN, env.BLOCK_IN,
wl.height, wl.width).transpose((0, 2, 4, 5, 1, 3))
kernel_np = kernel_np.reshape(
wl.out_filter//env.BLOCK_OUT, env.BLOCK_OUT,
CI_G//env.BLOCK_IN, env.BLOCK_IN,
wl.hkernel, wl.wkernel).transpose((0, 2, 4, 5, 1, 3))
bias_np = bias_np.reshape(
wl.batch//env.BATCH, wl.out_filter//env.BLOCK_OUT,
1, 1, env.BATCH, env.BLOCK_OUT)
# Build
if "vta" in target.keys:
mod = vta.build(s, [data, kernel, bias, res],
target=target,
target_host=env.target_host,
name="conv2d")
else:
mod = tvm.build(s, [data, kernel, bias, res],
target=target,
target_host=env.target_host,
name="conv2d")
temp = util.tempdir()
mod.save(temp.relpath("conv2d.o"))
remote.upload(temp.relpath("conv2d.o"))
f = remote.load_module("conv2d.o")
ctx = remote.context(str(target))
res_np = np.zeros(topi.util.get_const_tuple(res.shape)).astype(res.dtype)
data_arr = tvm.nd.array(data_np, ctx)
kernel_arr = tvm.nd.array(kernel_np, ctx)
bias_arr = tvm.nd.array(bias_np, ctx)
res_arr = tvm.nd.array(res_np, ctx)
time_f = f.time_evaluator("conv2d", ctx, number=samples)
# In vta sim mode, collect simulator runtime statistics
stats = {}
cost = None
if env.TARGET in ["sim", "tsim"]:
# Check if we're in local RPC mode (allows us to rebuild the
# runtime on the fly when varying the VTA designs)
local_rpc = int(os.environ.get("VTA_LOCAL_SIM_RPC", "0"))
if local_rpc:
if env.TARGET == "sim":
remote.get_function("vta.simulator.profiler_clear")()
else:
remote.get_function("vta.tsim.profiler_clear")()
cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
if env.TARGET == "sim":
stats = json.loads(remote.get_function("vta.simulator.profiler_status")())
else:
stats = json.loads(remote.get_function("vta.tsim.profiler_status")())
else:
simulator.clear_stats()
cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
stats = simulator.stats()
else:
cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
# Check correctness
correct = False
if check_correctness:
res_orig = res_arr.asnumpy()
if data_pack:
res_orig = res_orig.transpose(
(0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter, fout_height, fout_width)
bias_np = bias_np.transpose(
(0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter, 1, 1)
res_ref = res_ref >> env.WGT_WIDTH
res_ref += bias_np
res_ref = np.clip(res_ref, 0, (1 << env.OUT_WIDTH - 1) - 1)
res_ref = res_ref.astype(env.out_dtype)
correct = np.allclose(res_orig, res_ref)
gops = (num_ops / cost.mean) / float(10 ** 9)
status = "PASSED" if correct else "FAILED"
if "arm_cpu" in target.keys:
device = "CPU"
elif "vta" in target.keys:
device = "VTA"
print("%s GROUP CONV2D TEST %s: Time cost = %g sec/op, %g GOPS" % (device, status, cost.mean, gops))
return correct, cost, stats
def test_conv2d(device="vta"):
def _run(env, remote):
if device == "vta":
target = env.target
if env.TARGET not in ["sim", "tsim"]:
assert tvm.module.enabled("rpc")
program_fpga(remote, bitstream=None)
reconfig_runtime(remote)
elif device == "arm_cpu":
target = env.target_vta_cpu
with autotvm.tophub.context(target): # load pre-tuned schedule parameters
for _, wl in mobilenet_wkls:
print(wl)
run_group_conv2d(env, remote, wl, target)
vta.testing.run(_run)
if __name__ == "__main__":
test_conv2d(device="arm_cpu")
test_conv2d(device="vta")
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment