Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
69d5fcab
Commit
69d5fcab
authored
May 23, 2018
by
Tatsuya Nishiyama
Committed by
Tianqi Chen
May 29, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add count_include_pad support (#498)
* update tvm submodule * Add count_include_pad support to avg_pool
parent
fd6ad274
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
97 additions
and
28 deletions
+97
-28
nnvm/include/nnvm/top/nn.h
+31
-2
nnvm/src/compiler/fold_scale_axis.cc
+8
-8
nnvm/src/top/nn/pooling.cc
+22
-18
nnvm/tests/python/compiler/test_top_level2.py
+36
-0
No files found.
nnvm/include/nnvm/top/nn.h
View file @
69d5fcab
...
@@ -218,14 +218,14 @@ struct Conv2DTransposeParam : public dmlc::Parameter<Conv2DTransposeParam> {
...
@@ -218,14 +218,14 @@ struct Conv2DTransposeParam : public dmlc::Parameter<Conv2DTransposeParam> {
};
};
struct
Pool2DParam
:
public
dmlc
::
Parameter
<
Pool2DParam
>
{
struct
MaxPool2DParam
:
public
dmlc
::
Parameter
<
Max
Pool2DParam
>
{
TShape
pool_size
;
TShape
pool_size
;
TShape
strides
;
TShape
strides
;
TShape
padding
;
TShape
padding
;
std
::
string
layout
;
std
::
string
layout
;
bool
ceil_mode
;
bool
ceil_mode
;
DMLC_DECLARE_PARAMETER
(
Pool2DParam
)
{
DMLC_DECLARE_PARAMETER
(
Max
Pool2DParam
)
{
DMLC_DECLARE_FIELD
(
pool_size
)
DMLC_DECLARE_FIELD
(
pool_size
)
.
describe
(
"Size of the pooling windows.."
);
.
describe
(
"Size of the pooling windows.."
);
DMLC_DECLARE_FIELD
(
strides
).
set_default
(
TShape
({
1
,
1
}))
DMLC_DECLARE_FIELD
(
strides
).
set_default
(
TShape
({
1
,
1
}))
...
@@ -244,6 +244,35 @@ struct Pool2DParam : public dmlc::Parameter<Pool2DParam> {
...
@@ -244,6 +244,35 @@ struct Pool2DParam : public dmlc::Parameter<Pool2DParam> {
};
};
struct
AvgPool2DParam
:
public
dmlc
::
Parameter
<
AvgPool2DParam
>
{
TShape
pool_size
;
TShape
strides
;
TShape
padding
;
std
::
string
layout
;
bool
ceil_mode
;
bool
count_include_pad
;
DMLC_DECLARE_PARAMETER
(
AvgPool2DParam
)
{
DMLC_DECLARE_FIELD
(
pool_size
)
.
describe
(
"Size of the pooling windows.."
);
DMLC_DECLARE_FIELD
(
strides
).
set_default
(
TShape
({
1
,
1
}))
.
describe
(
"Specifies the strides of the convolution."
);
DMLC_DECLARE_FIELD
(
padding
).
set_default
(
TShape
({
0
,
0
}))
.
describe
(
"If padding is non-zero, then the input is implicitly zero-padded"
"on both sides for padding number of points"
);
DMLC_DECLARE_FIELD
(
layout
).
set_default
(
"NCHW"
)
.
describe
(
"Dimension ordering of data and weight. Can be 'NCHW', 'NHWC', etc."
"'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
"dimensions respectively. Convolution is applied on the 'H' and"
"'W' dimensions."
);
DMLC_DECLARE_FIELD
(
ceil_mode
).
set_default
(
false
)
.
describe
(
"When true, will use ceil instead of floor to compute the output shape."
);
DMLC_DECLARE_FIELD
(
count_include_pad
).
set_default
(
false
)
.
describe
(
"When true, will include padding to compute the average"
);
}
};
struct
GlobalPool2DParam
:
public
dmlc
::
Parameter
<
GlobalPool2DParam
>
{
struct
GlobalPool2DParam
:
public
dmlc
::
Parameter
<
GlobalPool2DParam
>
{
std
::
string
layout
;
std
::
string
layout
;
...
...
nnvm/src/compiler/fold_scale_axis.cc
View file @
69d5fcab
...
@@ -354,28 +354,28 @@ NNVM_REGISTER_OP(leaky_relu)
...
@@ -354,28 +354,28 @@ NNVM_REGISTER_OP(leaky_relu)
.
set_attr
<
FScaleAxisForward
>
(
"FScaleAxisForward"
,
ReluScaleAxisForward
);
.
set_attr
<
FScaleAxisForward
>
(
"FScaleAxisForward"
,
ReluScaleAxisForward
);
// property registration.
// property registration.
template
<
typename
T
>
bool
Pool2DBackward
(
bool
Pool2DBackward
(
const
NodeAttrs
&
attrs
,
const
NodeAttrs
&
attrs
,
const
std
::
vector
<
TShape
>&
in_shape
,
const
std
::
vector
<
TShape
>&
in_shape
,
const
std
::
vector
<
TShape
>&
out_shape
,
const
std
::
vector
<
TShape
>&
out_shape
,
const
FoldChainInfo
&
out_info
,
const
FoldChainInfo
&
out_info
,
std
::
vector
<
FoldChainInfo
>*
in_axis
)
{
std
::
vector
<
FoldChainInfo
>*
in_axis
)
{
using
top
::
Pool2DParam
;
const
T
&
param
=
nnvm
::
get
<
T
>
(
attrs
.
parsed
);
const
Pool2DParam
&
param
=
nnvm
::
get
<
Pool2DParam
>
(
attrs
.
parsed
);
if
(
out_info
.
axis
==
1
&&
param
.
layout
==
"NCHW"
)
{
if
(
out_info
.
axis
==
1
&&
param
.
layout
==
"NCHW"
)
{
(
*
in_axis
)[
0
]
=
out_info
;
(
*
in_axis
)[
0
]
=
out_info
;
}
}
return
false
;
return
false
;
}
}
template
<
typename
T
>
bool
Pool2DForward
(
bool
Pool2DForward
(
const
NodeAttrs
&
attrs
,
const
NodeAttrs
&
attrs
,
const
std
::
vector
<
TShape
>&
in_shape
,
const
std
::
vector
<
TShape
>&
in_shape
,
const
std
::
vector
<
TShape
>&
out_shape
,
const
std
::
vector
<
TShape
>&
out_shape
,
std
::
vector
<
FoldChainInfo
>*
in_info
,
std
::
vector
<
FoldChainInfo
>*
in_info
,
FoldChainInfo
*
out_info
)
{
FoldChainInfo
*
out_info
)
{
using
top
::
Pool2DParam
;
const
T
&
param
=
nnvm
::
get
<
T
>
(
attrs
.
parsed
);
const
Pool2DParam
&
param
=
nnvm
::
get
<
Pool2DParam
>
(
attrs
.
parsed
);
if
((
*
in_info
)[
0
].
axis
==
1
&&
param
.
layout
==
"NCHW"
)
{
if
((
*
in_info
)[
0
].
axis
==
1
&&
param
.
layout
==
"NCHW"
)
{
*
out_info
=
(
*
in_info
)[
0
];
*
out_info
=
(
*
in_info
)[
0
];
}
}
...
@@ -383,16 +383,16 @@ bool Pool2DForward(
...
@@ -383,16 +383,16 @@ bool Pool2DForward(
}
}
NNVM_REGISTER_OP
(
max_pool2d
)
NNVM_REGISTER_OP
(
max_pool2d
)
.
set_attr
<
FScaleAxisBackward
>
(
"FScaleAxisBackward"
,
Pool2DBackward
);
.
set_attr
<
FScaleAxisBackward
>
(
"FScaleAxisBackward"
,
Pool2DBackward
<
top
::
MaxPool2DParam
>
);
NNVM_REGISTER_OP
(
avg_pool2d
)
NNVM_REGISTER_OP
(
avg_pool2d
)
.
set_attr
<
FScaleAxisBackward
>
(
"FScaleAxisBackward"
,
Pool2DBackward
);
.
set_attr
<
FScaleAxisBackward
>
(
"FScaleAxisBackward"
,
Pool2DBackward
<
top
::
AvgPool2DParam
>
);
NNVM_REGISTER_OP
(
max_pool2d
)
NNVM_REGISTER_OP
(
max_pool2d
)
.
set_attr
<
FScaleAxisForward
>
(
"FScaleAxisForward"
,
Pool2DForward
);
.
set_attr
<
FScaleAxisForward
>
(
"FScaleAxisForward"
,
Pool2DForward
<
top
::
MaxPool2DParam
>
);
NNVM_REGISTER_OP
(
avg_pool2d
)
NNVM_REGISTER_OP
(
avg_pool2d
)
.
set_attr
<
FScaleAxisForward
>
(
"FScaleAxisForward"
,
Pool2DForward
);
.
set_attr
<
FScaleAxisForward
>
(
"FScaleAxisForward"
,
Pool2DForward
<
top
::
AvgPool2DParam
>
);
...
...
nnvm/src/top/nn/pooling.cc
View file @
69d5fcab
...
@@ -19,12 +19,13 @@ namespace top {
...
@@ -19,12 +19,13 @@ namespace top {
using
namespace
tvm
;
using
namespace
tvm
;
using
namespace
nnvm
::
compiler
;
using
namespace
nnvm
::
compiler
;
DMLC_REGISTER_PARAMETER
(
Pool2DParam
);
DMLC_REGISTER_PARAMETER
(
Max
Pool2DParam
);
template
<
typename
T
>
inline
bool
Pool2DInferShape
(
const
nnvm
::
NodeAttrs
&
attrs
,
inline
bool
Pool2DInferShape
(
const
nnvm
::
NodeAttrs
&
attrs
,
std
::
vector
<
TShape
>*
in_shape
,
std
::
vector
<
TShape
>*
in_shape
,
std
::
vector
<
TShape
>*
out_shape
)
{
std
::
vector
<
TShape
>*
out_shape
)
{
const
Pool2DParam
&
param
=
nnvm
::
get
<
Pool2DParam
>
(
attrs
.
parsed
);
const
T
&
param
=
nnvm
::
get
<
T
>
(
attrs
.
parsed
);
CHECK_EQ
(
in_shape
->
size
(),
1U
);
CHECK_EQ
(
in_shape
->
size
(),
1U
);
CHECK_EQ
(
out_shape
->
size
(),
1U
);
CHECK_EQ
(
out_shape
->
size
(),
1U
);
...
@@ -66,11 +67,12 @@ inline bool Pool2DInferShape(const nnvm::NodeAttrs& attrs,
...
@@ -66,11 +67,12 @@ inline bool Pool2DInferShape(const nnvm::NodeAttrs& attrs,
return
true
;
return
true
;
}
}
template
<
typename
T
>
inline
bool
Pool2DCorrectLayout
(
const
NodeAttrs
&
attrs
,
inline
bool
Pool2DCorrectLayout
(
const
NodeAttrs
&
attrs
,
std
::
vector
<
Layout
>
*
ilayouts
,
std
::
vector
<
Layout
>
*
ilayouts
,
const
std
::
vector
<
Layout
>
*
last_ilayouts
,
const
std
::
vector
<
Layout
>
*
last_ilayouts
,
std
::
vector
<
Layout
>
*
olayouts
)
{
std
::
vector
<
Layout
>
*
olayouts
)
{
const
Pool2DParam
&
param
=
nnvm
::
get
<
Pool2DParam
>
(
attrs
.
parsed
);
const
T
&
param
=
nnvm
::
get
<
T
>
(
attrs
.
parsed
);
CHECK_EQ
(
ilayouts
->
size
(),
1
);
CHECK_EQ
(
ilayouts
->
size
(),
1
);
CHECK_EQ
(
last_ilayouts
->
size
(),
1
);
CHECK_EQ
(
last_ilayouts
->
size
(),
1
);
CHECK_EQ
(
olayouts
->
size
(),
1
);
CHECK_EQ
(
olayouts
->
size
(),
1
);
...
@@ -114,18 +116,18 @@ NNVM_REGISTER_OP(max_pool2d)
...
@@ -114,18 +116,18 @@ NNVM_REGISTER_OP(max_pool2d)
)code"
NNVM_ADD_FILELINE
)
)code"
NNVM_ADD_FILELINE
)
.
add_argument
(
"data"
,
"4D Tensor"
,
"Input data."
)
.
add_argument
(
"data"
,
"4D Tensor"
,
"Input data."
)
.
add_arguments
(
Pool2DParam
::
__FIELDS__
())
.
add_arguments
(
Max
Pool2DParam
::
__FIELDS__
())
.
set_attr_parser
(
ParamParser
<
Pool2DParam
>
)
.
set_attr_parser
(
ParamParser
<
Max
Pool2DParam
>
)
.
set_attr
<
FGetAttrDict
>
(
"FGetAttrDict"
,
ParamGetAttrDict
<
Pool2DParam
>
)
.
set_attr
<
FGetAttrDict
>
(
"FGetAttrDict"
,
ParamGetAttrDict
<
Max
Pool2DParam
>
)
.
set_num_outputs
(
1
)
.
set_num_outputs
(
1
)
.
set_num_inputs
(
1
)
.
set_num_inputs
(
1
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
Pool2DInferShape
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
Pool2DInferShape
<
MaxPool2DParam
>
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
1
,
1
>
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
1
,
1
>
)
.
set_attr
<
FCorrectLayout
>
(
"FCorrectLayout"
,
Pool2DCorrectLayout
)
.
set_attr
<
FCorrectLayout
>
(
"FCorrectLayout"
,
Pool2DCorrectLayout
<
MaxPool2DParam
>
)
.
set_attr
<
FTVMCompute
>
(
"FTVMCompute"
,
[](
const
NodeAttrs
&
attrs
,
.
set_attr
<
FTVMCompute
>
(
"FTVMCompute"
,
[](
const
NodeAttrs
&
attrs
,
const
Array
<
Tensor
>&
inputs
,
const
Array
<
Tensor
>&
inputs
,
const
Array
<
Tensor
>&
out_info
)
{
const
Array
<
Tensor
>&
out_info
)
{
const
Pool2DParam
&
param
=
nnvm
::
get
<
Pool2DParam
>
(
attrs
.
parsed
);
const
MaxPool2DParam
&
param
=
nnvm
::
get
<
Max
Pool2DParam
>
(
attrs
.
parsed
);
auto
pool_size
=
ShapeToArray
(
param
.
pool_size
);
auto
pool_size
=
ShapeToArray
(
param
.
pool_size
);
auto
strides
=
ShapeToArray
(
param
.
strides
);
auto
strides
=
ShapeToArray
(
param
.
strides
);
auto
padding
=
ShapeToArray
(
param
.
padding
);
auto
padding
=
ShapeToArray
(
param
.
padding
);
...
@@ -163,12 +165,13 @@ NNVM_REGISTER_OP(_max_pool2d_grad)
...
@@ -163,12 +165,13 @@ NNVM_REGISTER_OP(_max_pool2d_grad)
.
add_argument
(
"output"
,
"4D Tensor"
,
"Output data of max_pool2d grad."
)
.
add_argument
(
"output"
,
"4D Tensor"
,
"Output data of max_pool2d grad."
)
.
set_num_inputs
(
3
)
.
set_num_inputs
(
3
)
.
set_num_outputs
(
1
)
.
set_num_outputs
(
1
)
.
set_attr_parser
(
ParamParser
<
Pool2DParam
>
)
.
set_attr_parser
(
ParamParser
<
Max
Pool2DParam
>
)
.
set_attr
<
FGetAttrDict
>
(
"FGetAttrDict"
,
ParamGetAttrDict
<
Pool2DParam
>
)
.
set_attr
<
FGetAttrDict
>
(
"FGetAttrDict"
,
ParamGetAttrDict
<
Max
Pool2DParam
>
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
AssignOutputAttr
<
TShape
,
1
,
0
>
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
AssignOutputAttr
<
TShape
,
1
,
0
>
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
3
,
1
>
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
3
,
1
>
)
.
set_attr
<
TIsBackward
>
(
"TIsBackward"
,
true
);
.
set_attr
<
TIsBackward
>
(
"TIsBackward"
,
true
);
DMLC_REGISTER_PARAMETER
(
AvgPool2DParam
);
NNVM_REGISTER_OP
(
avg_pool2d
)
NNVM_REGISTER_OP
(
avg_pool2d
)
.
describe
(
R"code(Average pooling operation for one dimensional data.
.
describe
(
R"code(Average pooling operation for one dimensional data.
...
@@ -187,20 +190,21 @@ NNVM_REGISTER_OP(avg_pool2d)
...
@@ -187,20 +190,21 @@ NNVM_REGISTER_OP(avg_pool2d)
)code"
NNVM_ADD_FILELINE
)
)code"
NNVM_ADD_FILELINE
)
.
add_argument
(
"data"
,
"4D Tensor"
,
"Input data."
)
.
add_argument
(
"data"
,
"4D Tensor"
,
"Input data."
)
.
add_arguments
(
Pool2DParam
::
__FIELDS__
())
.
add_arguments
(
Avg
Pool2DParam
::
__FIELDS__
())
.
set_attr_parser
(
ParamParser
<
Pool2DParam
>
)
.
set_attr_parser
(
ParamParser
<
Avg
Pool2DParam
>
)
.
set_attr
<
FGetAttrDict
>
(
"FGetAttrDict"
,
ParamGetAttrDict
<
Pool2DParam
>
)
.
set_attr
<
FGetAttrDict
>
(
"FGetAttrDict"
,
ParamGetAttrDict
<
Avg
Pool2DParam
>
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
Pool2DInferShape
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
Pool2DInferShape
<
AvgPool2DParam
>
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
1
,
1
>
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
1
,
1
>
)
.
set_attr
<
FCorrectLayout
>
(
"FCorrectLayout"
,
Pool2DCorrectLayout
)
.
set_attr
<
FCorrectLayout
>
(
"FCorrectLayout"
,
Pool2DCorrectLayout
<
AvgPool2DParam
>
)
.
set_attr
<
FTVMCompute
>
(
"FTVMCompute"
,
[](
const
NodeAttrs
&
attrs
,
.
set_attr
<
FTVMCompute
>
(
"FTVMCompute"
,
[](
const
NodeAttrs
&
attrs
,
const
Array
<
Tensor
>&
inputs
,
const
Array
<
Tensor
>&
inputs
,
const
Array
<
Tensor
>&
out_info
)
{
const
Array
<
Tensor
>&
out_info
)
{
const
Pool2DParam
&
param
=
nnvm
::
get
<
Pool2DParam
>
(
attrs
.
parsed
);
const
AvgPool2DParam
&
param
=
nnvm
::
get
<
Avg
Pool2DParam
>
(
attrs
.
parsed
);
auto
pool_size
=
ShapeToArray
(
param
.
pool_size
);
auto
pool_size
=
ShapeToArray
(
param
.
pool_size
);
auto
strides
=
ShapeToArray
(
param
.
strides
);
auto
strides
=
ShapeToArray
(
param
.
strides
);
auto
padding
=
ShapeToArray
(
param
.
padding
);
auto
padding
=
ShapeToArray
(
param
.
padding
);
auto
ceil_mode
=
param
.
ceil_mode
;
auto
ceil_mode
=
param
.
ceil_mode
;
auto
count_include_pad
=
param
.
count_include_pad
;
Layout
layout
(
param
.
layout
);
Layout
layout
(
param
.
layout
);
CHECK
(
layout
.
convertible
(
Layout
(
"NCHW"
)))
CHECK
(
layout
.
convertible
(
Layout
(
"NCHW"
)))
...
@@ -214,7 +218,7 @@ NNVM_REGISTER_OP(avg_pool2d)
...
@@ -214,7 +218,7 @@ NNVM_REGISTER_OP(avg_pool2d)
return
Array
<
Tensor
>
{
return
Array
<
Tensor
>
{
topi
::
nn
::
pool
(
inputs
[
0
],
pool_size
,
strides
,
padding
,
topi
::
nn
::
pool
(
inputs
[
0
],
pool_size
,
strides
,
padding
,
topi
::
nn
::
kAvgPool
,
ceil_mode
,
layout
.
name
())};
topi
::
nn
::
kAvgPool
,
ceil_mode
,
layout
.
name
()
,
count_include_pad
)};
})
})
.
set_num_outputs
(
1
)
.
set_num_outputs
(
1
)
.
set_num_inputs
(
1
)
.
set_num_inputs
(
1
)
...
...
nnvm/tests/python/compiler/test_top_level2.py
View file @
69d5fcab
...
@@ -141,6 +141,41 @@ def test_avg_pool2d():
...
@@ -141,6 +141,41 @@ def test_avg_pool2d():
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
b_np
,
rtol
=
1e-5
)
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
b_np
,
rtol
=
1e-5
)
def
test_avg_pool2d_no_count_pad
():
kh
,
kw
=
(
4
,
4
)
sh
,
sw
=
(
2
,
2
)
ph
,
pw
=
(
2
,
2
)
x
=
sym
.
Variable
(
"x"
)
y
=
sym
.
avg_pool2d
(
x
,
pool_size
=
(
kh
,
kw
),
strides
=
(
sw
,
sw
),
padding
=
(
ph
,
pw
),
name
=
"y"
,
count_include_pad
=
False
)
dtype
=
"float32"
n
=
1
(
ic
,
ih
,
iw
)
=
(
3
,
28
,
28
)
(
oc
,
oh
,
ow
)
=
(
3
,
15
,
15
)
a_np
=
np
.
random
.
uniform
(
low
=
0.001
,
size
=
(
n
,
ic
,
ih
,
iw
))
.
astype
(
dtype
)
pad_np
=
np
.
zeros
(
shape
=
(
n
,
ic
,
ih
+
2
*
ph
,
iw
+
2
*
pw
))
.
astype
(
dtype
)
no_zero
=
(
range
(
n
),
range
(
ic
),
(
range
(
ph
,
ih
+
ph
)),
(
range
(
pw
,
iw
+
pw
)))
pad_np
[
np
.
ix_
(
*
no_zero
)]
=
a_np
b_np
=
np
.
zeros
(
shape
=
(
n
,
oc
,
oh
,
ow
))
.
astype
(
dtype
)
for
i
in
range
(
oh
):
for
j
in
range
(
ow
):
pad_count
=
np
.
sum
(
pad_np
[:,
:,
i
*
sh
:
i
*
sh
+
kh
,
j
*
sw
:
j
*
sw
+
kw
]
>
0
,
axis
=
(
2
,
3
))
b_np
[:,:,
i
,
j
]
=
np
.
sum
(
pad_np
[:,
:,
i
*
sh
:
i
*
sh
+
kh
,
j
*
sw
:
j
*
sw
+
kw
],
axis
=
(
2
,
3
))
/
np
.
maximum
(
pad_count
,
1
)
b_np
=
np
.
maximum
(
b_np
,
0.0
)
shape_dict
=
{
"x"
:
(
n
,
ic
,
ih
,
iw
)}
for
target
,
ctx
in
ctx_list
():
graph
,
lib
,
_
=
nnvm
.
compiler
.
build
(
y
,
target
,
shape_dict
)
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
data
=
tvm
.
nd
.
array
(
a_np
)
m
.
run
(
x
=
data
)
out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
((
n
,
oc
,
oh
,
ow
),
dtype
))
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
b_np
,
rtol
=
1e-5
)
def
test_global_max_pool2d
():
def
test_global_max_pool2d
():
x
=
sym
.
Variable
(
"x"
)
x
=
sym
.
Variable
(
"x"
)
y
=
sym
.
global_max_pool2d
(
x
,
name
=
"y"
)
y
=
sym
.
global_max_pool2d
(
x
,
name
=
"y"
)
...
@@ -201,6 +236,7 @@ if __name__ == "__main__":
...
@@ -201,6 +236,7 @@ if __name__ == "__main__":
test_conv2d_transpose
()
test_conv2d_transpose
()
test_max_pool2d
()
test_max_pool2d
()
test_avg_pool2d
()
test_avg_pool2d
()
test_avg_pool2d_no_count_pad
()
test_global_max_pool2d
()
test_global_max_pool2d
()
test_global_avg_pool2d
()
test_global_avg_pool2d
()
test_upsampling
()
test_upsampling
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment