Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
66fa0c3d
Commit
66fa0c3d
authored
Dec 29, 2017
by
masahi
Committed by
Tianqi Chen
Dec 29, 2017
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Let CUDNN choose the best algo (#734)
* use cudnn findalgo to choose the best algo * fix lint
parent
f0cdb50e
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
176 additions
and
3 deletions
+176
-3
python/tvm/contrib/cudnn.py
+78
-1
src/contrib/cudnn/conv_forward.cc
+97
-1
topi/python/topi/cuda/conv2d.py
+1
-1
No files found.
python/tvm/contrib/cudnn.py
View file @
66fa0c3d
...
@@ -220,6 +220,70 @@ def conv2d_output_shape(tensor_format,
...
@@ -220,6 +220,70 @@ def conv2d_output_shape(tensor_format,
return
list
(
oshape
)
return
list
(
oshape
)
def
conv2d_find_algo
(
tensor_format
,
pad_h
,
pad_w
,
stride_h
,
stride_w
,
dilation_h
,
dilation_w
,
x_shape
,
w_shape
,
y_shape
):
"""Choose the best algo for the given input.
Paramters
---------
tensor_format: int
0: CUDNN_TENSOR_NCHW
1: CUDNN_TENSOR_NHWC
2: CUDNN_TENSOR_NCHW_VECT_C
pad_h: int
height pad
pad_w: int
weight pad
stride_h: int
height stride
stride_w: int
width stride
dilation_h: int
height dilation
dilation_w: int
width dilation
x_shape: list
input shape
w_shape: list
weight shape
y_shape: list
output shape
Returns
-------
algo: int
algo chosen by CUDNN
"""
func
=
_get_global_func
(
"tvm.contrib.cudnn.conv2d.find_algo"
)
return
func
(
tensor_format
,
pad_h
,
pad_w
,
stride_h
,
stride_w
,
dilation_h
,
dilation_w
,
x_shape
[
0
]
.
value
,
x_shape
[
1
]
.
value
,
x_shape
[
2
]
.
value
,
x_shape
[
3
]
.
value
,
w_shape
[
0
]
.
value
,
w_shape
[
1
]
.
value
,
w_shape
[
2
]
.
value
,
w_shape
[
3
]
.
value
,
y_shape
[
0
],
y_shape
[
1
],
y_shape
[
2
],
y_shape
[
3
])
def
conv2d_forward
(
x
,
def
conv2d_forward
(
x
,
w
,
w
,
stride_h
=
1
,
stride_h
=
1
,
...
@@ -230,7 +294,7 @@ def conv2d_forward(x,
...
@@ -230,7 +294,7 @@ def conv2d_forward(x,
dilation_w
=
1
,
dilation_w
=
1
,
conv_mode
=
1
,
conv_mode
=
1
,
tensor_format
=
0
,
tensor_format
=
0
,
algo
=
0
):
algo
=
-
1
):
"""Create an extern op that compute 2D convolution with CuDNN
"""Create an extern op that compute 2D convolution with CuDNN
Parameters
Parameters
...
@@ -260,6 +324,7 @@ def conv2d_forward(x,
...
@@ -260,6 +324,7 @@ def conv2d_forward(x,
2: CUDNN_TENSOR_NCHW_VECT_C
2: CUDNN_TENSOR_NCHW_VECT_C
algo: int
algo: int
Forward algorithm, get index from ```algo_to_index``` function
Forward algorithm, get index from ```algo_to_index``` function
if algo == -1, the best algo will be chosen by CUDNN
Returns
Returns
-------
-------
...
@@ -275,6 +340,18 @@ def conv2d_forward(x,
...
@@ -275,6 +340,18 @@ def conv2d_forward(x,
dilation_w
,
dilation_w
,
list
(
x
.
shape
),
list
(
x
.
shape
),
list
(
w
.
shape
))
list
(
w
.
shape
))
if
algo
==
-
1
:
algo
=
conv2d_find_algo
(
tensor_format
,
pad_h
,
pad_w
,
stride_h
,
stride_w
,
dilation_h
,
dilation_w
,
list
(
x
.
shape
),
list
(
w
.
shape
),
oshape
)
return
_api
.
extern
(
return
_api
.
extern
(
oshape
,
[
x
,
w
],
oshape
,
[
x
,
w
],
lambda
ins
,
outs
:
_intrin
.
call_packed
(
lambda
ins
,
outs
:
_intrin
.
call_packed
(
...
...
src/contrib/cudnn/conv_forward.cc
View file @
66fa0c3d
...
@@ -153,7 +153,103 @@ TVM_REGISTER_GLOBAL("tvm.contrib.cudnn.conv2d.output_shape")
...
@@ -153,7 +153,103 @@ TVM_REGISTER_GLOBAL("tvm.contrib.cudnn.conv2d.output_shape")
static_cast
<
int
*>
(
out_shape
)
+
1
,
static_cast
<
int
*>
(
out_shape
)
+
1
,
static_cast
<
int
*>
(
out_shape
)
+
2
,
static_cast
<
int
*>
(
out_shape
)
+
2
,
static_cast
<
int
*>
(
out_shape
)
+
3
));
static_cast
<
int
*>
(
out_shape
)
+
3
));
});
});
TVM_REGISTER_GLOBAL
(
"tvm.contrib.cudnn.conv2d.find_algo"
)
.
set_body
([](
TVMArgs
args
,
TVMRetValue
*
ret
)
{
CuDNNThreadEntry
*
entry_ptr
=
CuDNNThreadEntry
::
ThreadLocal
();
int
format
=
args
[
0
];
int
pad_h
=
args
[
1
];
int
pad_w
=
args
[
2
];
int
stride_h
=
args
[
3
];
int
stride_w
=
args
[
4
];
int
dilation_h
=
args
[
5
];
int
dilation_w
=
args
[
6
];
int
x_dim0
=
args
[
7
];
int
x_dim1
=
args
[
8
];
int
x_dim2
=
args
[
9
];
int
x_dim3
=
args
[
10
];
int
w_dim0
=
args
[
11
];
int
w_dim1
=
args
[
12
];
int
w_dim2
=
args
[
13
];
int
w_dim3
=
args
[
14
];
int
y_dim0
=
args
[
15
];
int
y_dim1
=
args
[
16
];
int
y_dim2
=
args
[
17
];
int
y_dim3
=
args
[
18
];
// Set Format
entry_ptr
->
conv_entry
.
tensor_format
=
static_cast
<
cudnnTensorFormat_t
>
(
format
);
// conv desc
CUDNN_CALL
(
cudnnSetConvolution2dDescriptor
(
entry_ptr
->
conv_entry
.
conv_desc
,
pad_h
,
pad_w
,
stride_h
,
stride_w
,
dilation_h
,
dilation_w
,
CUDNN_CROSS_CORRELATION
,
entry_ptr
->
conv_entry
.
data_type
));
// input desc
CUDNN_CALL
(
cudnnSetTensor4dDescriptor
(
entry_ptr
->
conv_entry
.
input_desc
,
entry_ptr
->
conv_entry
.
tensor_format
,
CUDNN_DATA_FLOAT
,
x_dim0
,
x_dim1
,
x_dim2
,
x_dim3
));
// filter desc
CUDNN_CALL
(
cudnnSetFilter4dDescriptor
(
entry_ptr
->
conv_entry
.
filter_desc
,
CUDNN_DATA_FLOAT
,
CUDNN_TENSOR_NCHW
,
w_dim0
,
w_dim1
,
w_dim2
,
w_dim3
));
// output desc
CUDNN_CALL
(
cudnnSetTensor4dDescriptor
(
entry_ptr
->
conv_entry
.
output_desc
,
entry_ptr
->
conv_entry
.
tensor_format
,
entry_ptr
->
conv_entry
.
data_type
,
y_dim0
,
y_dim1
,
y_dim2
,
y_dim3
));
int
returned_algo_count
=
0
;
cudnnConvolutionFwdAlgoPerf_t
perf_results
[
CUDNN_CONVOLUTION_FWD_ALGO_COUNT
];
CUDNN_CALL
(
cudnnFindConvolutionForwardAlgorithm
(
entry_ptr
->
handle
,
entry_ptr
->
conv_entry
.
input_desc
,
entry_ptr
->
conv_entry
.
filter_desc
,
entry_ptr
->
conv_entry
.
conv_desc
,
entry_ptr
->
conv_entry
.
output_desc
,
CUDNN_CONVOLUTION_FWD_ALGO_COUNT
,
&
returned_algo_count
,
perf_results
));
const
std
::
vector
<
std
::
string
>
fwd_algo_names
{
"CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM"
,
"CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM"
,
"CUDNN_CONVOLUTION_FWD_ALGO_GEMM"
,
"CUDNN_CONVOLUTION_FWD_ALGO_DIRECT"
,
"CUDNN_CONVOLUTION_FWD_ALGO_FFT"
,
"CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING"
,
"CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD"
,
"CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED"
};
auto
best_algo
=
perf_results
[
0
].
algo
;
LOG
(
INFO
)
<<
"
\t
CUDNN Found "
<<
returned_algo_count
<<
" fwd algorithms, choosing "
<<
fwd_algo_names
[
best_algo
];
for
(
int
i
=
0
;
i
<
returned_algo_count
;
++
i
)
{
LOG
(
INFO
)
<<
"
\t\t
"
<<
i
<<
") "
<<
fwd_algo_names
[
perf_results
[
i
].
algo
]
<<
" - time: "
<<
perf_results
[
i
].
time
<<
" ms"
<<
", Memory: "
<<
perf_results
[
i
].
memory
;
}
ret
[
0
]
=
best_algo
;
});
}
// namespace contrib
}
// namespace contrib
}
// namespace tvm
}
// namespace tvm
topi/python/topi/cuda/conv2d.py
View file @
66fa0c3d
...
@@ -56,7 +56,7 @@ def conv2d_cuda(data, kernel, stride, padding, layout='NCHW', out_dtype='float32
...
@@ -56,7 +56,7 @@ def conv2d_cuda(data, kernel, stride, padding, layout='NCHW', out_dtype='float32
1
,
# dilation_w
1
,
# dilation_w
conv_mode
=
1
,
conv_mode
=
1
,
tensor_format
=
tensor_format
,
tensor_format
=
tensor_format
,
algo
=
0
)
algo
=
-
1
)
# let CUDNN choose the best algo
elif
layout
==
'NCHW'
:
elif
layout
==
'NCHW'
:
return
topi
.
nn
.
conv2d_nchw
(
data
,
kernel
,
stride
,
padding
,
out_dtype
)
return
topi
.
nn
.
conv2d_nchw
(
data
,
kernel
,
stride
,
padding
,
out_dtype
)
elif
layout
==
'HWCN'
:
elif
layout
==
'HWCN'
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment