Commit 651bdf2f by Thierry Moreau Committed by Yizhi Liu

[VTA][HotFix] Relay->VTA quantization fix (#4433)

* relay -> vta fix

* setting optlevel to 3 for quantization to fold batchnorm
parent abe8708f
...@@ -125,6 +125,8 @@ def compile_network(opt, env, target): ...@@ -125,6 +125,8 @@ def compile_network(opt, env, target):
dtype_dict.update({k: str(v.dtype) for k, v in params.items()}) dtype_dict.update({k: str(v.dtype) for k, v in params.items()})
# Perform quantization in Relay # Perform quantization in Relay
# Note: We set opt_level to 3 in order to fold batch norm
with relay.build_config(opt_level=3):
with relay.quantize.qconfig(global_scale=8.0, with relay.quantize.qconfig(global_scale=8.0,
skip_conv_layers=[0]): skip_conv_layers=[0]):
relay_prog = relay.quantize.quantize(mod["main"], params=params) relay_prog = relay.quantize.quantize(mod["main"], params=params)
......
...@@ -89,15 +89,17 @@ def compile_network(env, target, model, start_pack, stop_pack): ...@@ -89,15 +89,17 @@ def compile_network(env, target, model, start_pack, stop_pack):
dtype_dict.update({k: str(v.dtype) for k, v in params.items()}) dtype_dict.update({k: str(v.dtype) for k, v in params.items()})
# Perform quantization in Relay # Perform quantization in Relay
# Note: We set opt_level to 3 in order to fold batch norm
with relay.build_config(opt_level=3):
with relay.quantize.qconfig(global_scale=8.0, with relay.quantize.qconfig(global_scale=8.0,
skip_conv_layers=[0]): skip_conv_layers=[0]):
relay_prog = relay.quantize.quantize(mod["main"], params=params) mod = relay.quantize.quantize(mod, params=params)
# Perform graph packing and constant folding for VTA target # Perform graph packing and constant folding for VTA target
if target.device_name == "vta": if target.device_name == "vta":
assert env.BLOCK_IN == env.BLOCK_OUT assert env.BLOCK_IN == env.BLOCK_OUT
relay_prog = graph_pack( relay_prog = graph_pack(
relay_prog, mod["main"],
env.BATCH, env.BATCH,
env.BLOCK_OUT, env.BLOCK_OUT,
env.WGT_WIDTH, env.WGT_WIDTH,
......
...@@ -168,13 +168,15 @@ with autotvm.tophub.context(target): ...@@ -168,13 +168,15 @@ with autotvm.tophub.context(target):
if target.device_name == "vta": if target.device_name == "vta":
# Perform quantization in Relay # Perform quantization in Relay
# Note: We set opt_level to 3 in order to fold batch norm
with relay.build_config(opt_level=3):
with relay.quantize.qconfig(global_scale=8.0, with relay.quantize.qconfig(global_scale=8.0,
skip_conv_layers=[0]): skip_conv_layers=[0]):
relay_prog = relay.quantize.quantize(mod["main"], params=params) mod = relay.quantize.quantize(mod, params=params)
# Perform graph packing and constant folding for VTA target # Perform graph packing and constant folding for VTA target
assert env.BLOCK_IN == env.BLOCK_OUT assert env.BLOCK_IN == env.BLOCK_OUT
relay_prog = graph_pack( relay_prog = graph_pack(
relay_prog, mod["main"],
env.BATCH, env.BATCH,
env.BLOCK_OUT, env.BLOCK_OUT,
env.WGT_WIDTH, env.WGT_WIDTH,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment