Commit 5c410c4c by Wuwei Lin Committed by Tianqi Chen

[TOPI][CUDA] int8 group conv2d (#2075)

parent 3ee13fc5
......@@ -108,6 +108,9 @@ def compute_conv2d(attrs, inputs, _):
groups == channels:
out = topi.nn.depthwise_conv2d_nchw(
inputs[0], inputs[1], strides, padding, dilation, out_dtype=out_dtype)
elif layout == "NCHW":
out = topi.nn.group_conv2d_nchw(inputs[0], inputs[1], strides, padding, dilation, groups,
out_dtype=out_dtype)
elif layout == "NHWC" and \
kernel_layout == "HWOI" and \
groups == get_const_int(inputs[0].shape[3]) and \
......@@ -143,6 +146,8 @@ def schedule_conv2d(attrs, outs, target):
return topi.generic.schedule_depthwise_conv2d_nchw(outs)
elif groups == channels and layout == "NHWC" and kernel_layout == "HWOI":
return topi.generic.schedule_depthwise_conv2d_nhwc(outs)
elif layout == "NCHW":
return topi.generic.schedule_group_conv2d_nchw(outs)
else:
raise ValueError("No compatible schedule")
......
......@@ -58,7 +58,8 @@ class TaskExtractEnv:
# NOTE: To add more symbols, you only need to change the following lists
# nnvm symbol -> topi compute
self.symbol2topi = {
nnvm.sym.conv2d: [topi.nn.conv2d, topi.nn.depthwise_conv2d_nchw],
nnvm.sym.conv2d: [topi.nn.conv2d, topi.nn.depthwise_conv2d_nchw,
topi.nn.group_conv2d_nchw],
nnvm.sym.conv2d_transpose: [topi.nn.conv2d_transpose_nchw],
nnvm.sym.dense: [topi.nn.dense],
}
......@@ -67,6 +68,7 @@ class TaskExtractEnv:
self.topi_to_task = {
topi.nn.conv2d: "topi_nn_conv2d",
topi.nn.depthwise_conv2d_nchw: "topi_nn_depthwise_conv2d_nchw",
topi.nn.group_conv2d_nchw: "topi_nn_group_conv2d_nchw",
topi.nn.conv2d_transpose_nchw: "topi_nn_conv2d_transpose_nchw",
topi.nn.dense: "topi_nn_dense",
}
......@@ -76,6 +78,7 @@ class TaskExtractEnv:
topi.generic.schedule_conv2d_nhwc],
topi.nn.depthwise_conv2d_nchw: [topi.generic.schedule_depthwise_conv2d_nchw,
topi.generic.schedule_depthwise_conv2d_nhwc],
topi.nn.group_conv2d_nchw: [topi.generic.schedule_group_conv2d_nchw],
topi.nn.conv2d_transpose_nchw: [topi.generic.schedule_conv2d_transpose_nchw],
topi.nn.dense: [topi.generic.schedule_dense],
}
......@@ -143,6 +146,15 @@ class TaskExtractEnv:
s = topi.generic.schedule_depthwise_conv2d_nchw([C])
return s, [A, W, C]
@register("topi_nn_group_conv2d_nchw")
def _topi_nn_group_conv2d_nchw(*args, **kwargs):
assert not kwargs, "Do not support kwargs in template function call"
args = deserialize_args(args)
A, W = args[:2]
C = topi.nn.group_conv2d_nchw(*args, **kwargs)
s = topi.generic.schedule_group_conv2d_nchw([C])
return s, [A, W, C]
@register("topi_nn_conv2d_transpose_nchw")
def _topi_nn_conv2d_transpose_nchw(*args, **kwargs):
assert not kwargs, "Do not support kwargs in template function call"
......
......@@ -2,10 +2,11 @@
"""CUDA specific declaration and schedules."""
from __future__ import absolute_import as _abs
from . import conv2d, depthwise_conv2d, conv2d_transpose_nchw
from . import conv2d, depthwise_conv2d, conv2d_transpose_nchw, group_conv2d_nchw
from .conv2d_hwcn import schedule_conv2d_hwcn
from .depthwise_conv2d import schedule_depthwise_conv2d_backward_input_nhwc
from .depthwise_conv2d import schedule_depthwise_conv2d_backward_weight_nhwc
from .group_conv2d_nchw import schedule_conv2d_nchw_cuda
from .reduction import schedule_reduce
from .softmax import schedule_softmax
from .injective import schedule_injective, schedule_elemwise, schedule_broadcast
......
# pylint: disable=invalid-name
"""The template for cuda group_conv2d_nchw"""
import tvm
from tvm import autotvm
from .injective import _schedule_injective
from .tensor_intrin import dp4a
from ..nn.pad import pad
from ..nn.util import get_pad_tuple
from ..util import traverse_inline, get_const_tuple, get_const_int
from .. import nn, generic
@autotvm.register_topi_compute(nn.group_conv2d_nchw, ['cuda', 'gpu'], ['direct', 'int8'])
def group_conv2d_nchw_cuda(cfg, data, kernel, stride, padding, dilation, groups,
out_dtype='float32'):
"""Group convolution operator in NCHW layout.
Parameters
----------
data : tvm.Tensor
4-D with shape [batch, in_channel, in_height, in_width] or
5-D with shape [batch, in_channel_chunk, in_height, in_width, in_channel_block]
kernel : tvm.Tensor
4-D with shape [num_filter, in_channel // groups, filter_height, filter_width] or
6-D with shape [num_filter_chunk, in_channel_chunk // groups, filter_height,
filter_width, num_filter_block, in_channel_block]
stride : int or a list/tuple of two ints
Stride size, or [stride_height, stride_width]
padding : int or str
Padding size, or ['VALID', 'SAME']
dilation : int or a list/tuple of two ints
dilation size, or [dilation_height, dilation_width]
groups : int
number of groups
out_dtype : str
The output type. This is used for mixed precision.
Returns
-------
Output : tvm.Tensor
5-D with shape [batch, out_channel, out_height, out_width, out_channel_block]
"""
ic_block_factor = 4
oc_block_factor = 4
pre_computed = len(kernel.shape) == 6
if not pre_computed:
batch, channels, height, width = get_const_tuple(data.shape)
out_channels, in_channels, kernel_h, kernel_w = get_const_tuple(
kernel.shape)
assert channels % groups == 0, "input channels must divide group size"
assert out_channels % groups == 0, "output channels must divide group size"
assert channels % ic_block_factor == 0, \
"Number of input channels per group must divide {}".format(ic_block_factor)
assert out_channels % 4 == 0, \
"Number of output channels per group must divide {}".format(oc_block_factor)
packed_data = tvm.compute((batch, channels // ic_block_factor, height, width,
ic_block_factor),
lambda n, c, h, w, vc: data[n, c*ic_block_factor + vc, h, w],
name="packed_data")
packed_kernel = tvm.compute(
(out_channels // oc_block_factor, in_channels // ic_block_factor, kernel_h, kernel_w,
oc_block_factor, ic_block_factor),
lambda oc_chunk, ic_chunk, kh, kw, oc_block, ic_block:
kernel[oc_chunk * oc_block_factor + oc_block,
ic_chunk * ic_block_factor + ic_block, kh, kw],
name="packed_kernel")
else:
packed_data = data
packed_kernel = kernel
batch, ic_chunk, in_height, in_width, _ = get_const_tuple(
packed_data.shape)
oc_chunk, _, kernel_h, kernel_w, oc_block, ic_block = get_const_tuple(
packed_kernel.shape)
if isinstance(stride, int):
stride_h = stride_w = stride
else:
stride_h, stride_w = stride
if isinstance(dilation, int):
dilation_h = dilation_w = dilation
else:
dilation_h, dilation_w = dilation
pad_top, pad_left, pad_down, pad_right = get_pad_tuple(
padding, (kernel_h, kernel_w))
# compute graph
pad_before = [0, 0, pad_top, pad_left, 0]
pad_after = [0, 0, pad_down, pad_right, 0]
pad_data = pad(packed_data, pad_before, pad_after, name="pad_data")
# compute the output shape
out_height = (in_height - (kernel_h - 1) * dilation_h -
1 + pad_top + pad_down) // stride_h + 1
out_width = (in_width - (kernel_w - 1) * dilation_w -
1 + pad_left + pad_right) // stride_w + 1
oshape = (batch, oc_chunk, out_height, out_width, oc_block)
icc = tvm.reduce_axis((0, ic_chunk // groups), name='ic_chunk')
icb = tvm.reduce_axis((0, ic_block_factor), name='ic_block')
kh = tvm.reduce_axis((0, kernel_h), name='kh')
kw = tvm.reduce_axis((0, kernel_w), name='kw')
conv = tvm.compute(oshape, lambda n, occ, oh, ow, ocb:
tvm.sum(pad_data[n, occ//(oc_chunk//groups)*(ic_chunk//groups)+icc,
oh*stride_h+kh*dilation_h, ow*stride_w+kw*dilation_w, icb]
.astype('int32') *
packed_kernel[occ, icc,
kh, kw, ocb, icb]
.astype('int32'),
axis=[icc, kh, kw, icb]))
output = tvm.compute(oshape, lambda *index: conv(*index).astype(out_dtype),
tag='group_conv2d_NCHWc_int8')
num_flop = batch * oc_chunk * oc_block * out_height * out_width * \
ic_chunk * ic_block * kernel_h * kernel_w * 2 // groups
cfg.add_flop(num_flop)
return output
_dp4a = dp4a('shared', 'shared', 'local')
def schedule_group_conv2d_NCHWc_int8(cfg, s, output):
"""Schedule group conv2d int8 NCHWc template"""
workload = output.op.attrs["workload"]
groups = get_const_int(workload[6])
conv = output.op.input_tensors[0]
packed_data, packed_kernel = conv.op.input_tensors
if isinstance(packed_data.op, tvm.tensor.ComputeOp) and "pad" in packed_data.op.tag:
pad_data = packed_data
packed_data = pad_data.op.input_tensors[0]
else:
pad_data = packed_data
if autotvm.GLOBAL_SCOPE.in_tuning:
# skip this part during tuning to make records accurate
# this part will be pre-computed during NNVM's pre-compute optimization pass
s[packed_data].pragma(s[packed_data].op.axis[0], "debug_skip_region")
s[packed_kernel].pragma(
s[packed_kernel].op.axis[0], "debug_skip_region")
else:
if isinstance(packed_kernel.op, tvm.tensor.ComputeOp) and\
packed_kernel.name == 'packed_kernel':
# data and kernel are not pre-computed, schedule layout transform here
_schedule_injective(packed_data.op, s)
_schedule_injective(packed_kernel.op, s)
if pad_data != packed_data:
s[pad_data].compute_inline()
# create cache stage
AA = s.cache_read(pad_data, 'shared', [conv])
WW = s.cache_read(packed_kernel, 'shared', [conv])
s[conv].set_scope('local')
# handle bias
if output.op not in s.outputs:
s[output].compute_inline()
output = s.outputs[0].output(0)
oc_chunk = get_const_int(output.shape[1])
# tile and bind spatial axes
n, f, y, x, c = s[output].op.axis
cfg.define_split("tile_n", n, num_outputs=4)
cfg.define_split("tile_g", cfg.axis(groups), num_outputs=2)
cfg.define_split("tile_f", cfg.axis(oc_chunk // groups), num_outputs=4)
cfg.define_split("tile_y", y, num_outputs=4)
cfg.define_split("tile_x", x, num_outputs=4)
# this is the scope to attach global config inside this kernel
kernel_scope, n = s[output].split(n, nparts=1)
g, f = s[output].split(f, nparts=groups)
s[output].bind(n, tvm.thread_axis('blockIdx.z'))
bn, vn, tn, ni = cfg["tile_n"].apply(s, output, n)
bg, vg = cfg["tile_g"].apply(s, output, g)
bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f)
by, vy, ty, yi = cfg["tile_y"].apply(s, output, y)
bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x)
s[output].reorder(bn, bg, bf, by, bx, vn, vg, vf, vy,
vx, tn, tf, ty, tx, ni, fi, yi, xi)
s[output].bind(bn, tvm.thread_axis("blockIdx.z"))
s[output].bind(s[output].fuse(bg, bf), tvm.thread_axis("blockIdx.y"))
s[output].bind(s[output].fuse(by, bx), tvm.thread_axis("blockIdx.x"))
s[output].bind(vn, tvm.thread_axis("vthread"))
s[output].bind(vg, tvm.thread_axis("vthread"))
s[output].bind(vf, tvm.thread_axis("vthread"))
s[output].bind(vy, tvm.thread_axis("vthread"))
s[output].bind(vx, tvm.thread_axis("vthread"))
cfg.define_knob("fuse_yx", [0, 1]) # fuse ty,tx or tn,tf
if cfg["fuse_yx"].val:
s[output].bind(tn, tvm.thread_axis("threadIdx.z"))
s[output].bind(tf, tvm.thread_axis("threadIdx.y"))
tyx = s[output].fuse(ty, tx)
s[output].bind(tyx, tvm.thread_axis("threadIdx.x"))
s[conv].compute_at(s[output], tyx)
# number of threads
n_tz = cfg["tile_n"].size[2]
n_ty = cfg["tile_f"].size[2]
n_tx = cfg["tile_y"].size[2] * cfg["tile_x"].size[2]
else:
s[output].bind(tn, tvm.thread_axis("threadIdx.z"))
s[output].bind(s[output].fuse(tn, tf), tvm.thread_axis("threadIdx.z"))
s[output].bind(ty, tvm.thread_axis("threadIdx.y"))
s[output].bind(tx, tvm.thread_axis("threadIdx.x"))
s[conv].compute_at(s[output], tx)
# number of threads
n_tz = cfg["tile_n"].size[2] * cfg["tile_f"].size[2]
n_ty = cfg["tile_y"].size[2]
n_tx = cfg["tile_x"].size[2]
# tile and bind reduction axes
n, f, y, x, c = s[conv].op.axis
rc, ry, rx, rc_block = s[conv].op.reduce_axis
cfg.define_split("tile_rc", cfg.axis(rc), num_outputs=2)
cfg.define_split("tile_ry", cfg.axis(ry), num_outputs=2)
cfg.define_split("tile_rx", cfg.axis(rx), num_outputs=2)
rco, rci = cfg['tile_rc'].apply(s, conv, rc)
ryo, ryi = cfg['tile_ry'].apply(s, conv, ry)
rxo, rxi = cfg['tile_rx'].apply(s, conv, rx)
s[conv].reorder(rco, ryo, rxo, rci, ryi, rxi, n, f, y, x, c, rc_block)
_, rc_block = s[conv].split(rc_block, factor=4)
s[conv].tensorize(rc_block, _dp4a)
s[AA].compute_at(s[conv], rxo)
s[WW].compute_at(s[conv], rxo)
# cooperative fetching
for load in [AA, WW]:
c = s[load].op.axis[-1]
c_outer, c = s[load].split(c, factor=4)
s[load].vectorize(c)
fused = s[load].op.axis[:-1] + [c_outer]
fused = s[load].fuse(*fused)
fused, tx = s[load].split(fused, factor=n_tx)
fused, ty = s[load].split(fused, factor=n_ty)
fused, tz = s[load].split(fused, factor=n_tz)
s[load].bind(tz, tvm.thread_axis("threadIdx.z"))
s[load].bind(ty, tvm.thread_axis("threadIdx.y"))
s[load].bind(tx, tvm.thread_axis("threadIdx.x"))
# double buffer
cfg.define_knob('AA_double_buffer', [0, 1])
cfg.define_knob('WW_double_buffer', [0, 1])
if cfg['AA_double_buffer'].val:
s[AA].double_buffer()
if cfg['WW_double_buffer'].val:
s[WW].double_buffer()
# unroll
cfg.define_knob("auto_unroll_max_step", [0, 512, 1500])
s[output].pragma(kernel_scope, 'auto_unroll_max_step',
cfg['auto_unroll_max_step'].val)
s[output].pragma(kernel_scope, 'unroll_explicit', False)
return s
@autotvm.register_topi_schedule(generic.schedule_group_conv2d_nchw,
["cuda", "gpu"], ["direct", "int8"])
def schedule_conv2d_nchw_cuda(cfg, outs):
"""TOPI schedule callback of group conv2d for cuda gpu
Parameters
----------
cfg: ConfigEntity
The config for this template
outs: Array of Tensor
The computation graph description of conv2d
in the format of an array of tensors.
Returns
-------
s: Schedule
The computation schedule for group conv2d.
"""
outs = [outs] if isinstance(outs, tvm.tensor.Tensor) else outs
s = tvm.create_schedule([x.op for x in outs])
def _callback(op):
if op.tag == "group_conv2d_NCHWc_int8":
schedule_group_conv2d_NCHWc_int8(cfg, s, op.output(0))
traverse_inline(s, outs[0].op, _callback)
return s
......@@ -173,6 +173,25 @@ def schedule_depthwise_conv2d_nhwc(outs):
"""
return _default_schedule(outs, False)
@tvm.target.generic_func
def schedule_group_conv2d_nchw(outs):
"""Schedule for conv2d_nchw
Parameters
----------
outs: Array of Tensor
The computation graph description of group_conv2d_nchw
in the format of an array of tensors.
Returns
-------
sch: Schedule
The computation schedule for the op.
"""
return _default_schedule(outs, False)
@tvm.target.generic_func
def schedule_bitserial_conv2d_nchw(outs):
"""Schedule for bitserial_conv2d_nchw
......
......@@ -403,3 +403,80 @@ def conv2d_winograd_without_weight_transform(input, filter, strides, padding, di
4-D with shape [batch, out_height, out_width, out_channel]
"""
raise ValueError("missing register for topi.nn.conv2d_winograd_without_weight_transform")
@tvm.target.generic_func
def group_conv2d_nchw(Input, Filter, stride, padding, dilation, groups, out_dtype=None):
"""Group convolution operator in NCHW layout.
Parameters
----------
Input : tvm.Tensor
4-D with shape [batch, in_channel, in_height, in_width]
Filter : tvm.Tensor
4-D with shape [num_filter, in_channel // groups, filter_height, filter_width]
stride : int or a list/tuple of two ints
Stride size, or [stride_height, stride_width]
padding : int or str
Padding size, or ['VALID', 'SAME']
dilation : int or a list/tuple of two ints
dilation size, or [dilation_height, dilation_width]
groups : int
number of groups
out_dtype : str
The output type. This is used for mixed precision.
Returns
-------
Output : tvm.Tensor
4-D with shape [batch, out_channel, out_height, out_width]
"""
if out_dtype is None:
out_dtype = Input.dtype
assert isinstance(stride, int) or len(stride) == 2
assert isinstance(dilation, int) or len(dilation) == 2
if isinstance(stride, int):
stride_h = stride_w = stride
else:
stride_h, stride_w = stride
if isinstance(dilation, int):
dilation_h = dilation_w = dilation
else:
dilation_h, dilation_w = dilation
batch, in_channel, in_height, in_width = get_const_tuple(Input.shape)
num_filter, _, kernel_h, kernel_w = get_const_tuple(Filter.shape)
assert in_channel % groups == 0, "input channels must divide group size"
assert num_filter % groups == 0, "output channels must divide group size"
pad_top, pad_left, pad_down, pad_right = get_pad_tuple(
padding, (kernel_h, kernel_w))
# compute the output shape
out_channel = num_filter
out_height = simplify(
(in_height - (kernel_h - 1) * dilation_h - 1 + pad_top + pad_down) // stride_h + 1)
out_width = simplify(
(in_width - (kernel_w - 1) * dilation_w - 1 + pad_left + pad_right) // stride_w + 1)
# compute graph
pad_before = [0, 0, pad_top, pad_left]
pad_after = [0, 0, pad_down, pad_right]
temp = pad(Input, pad_before, pad_after, name="pad_temp")
rc = tvm.reduce_axis((0, in_channel // groups), name='rc')
ry = tvm.reduce_axis((0, kernel_h), name='ry')
rx = tvm.reduce_axis((0, kernel_w), name='rx')
return tvm.compute(
(batch, out_channel, out_height, out_width),
lambda nn, ff, yy, xx: tvm.sum(
temp[nn, ff // (num_filter//groups) * (in_channel//groups) + rc,
yy * stride_h + ry * dilation_h,
xx * stride_w + rx * dilation_w].astype(out_dtype) *
Filter[ff, rc, ry, rx].astype(out_dtype),
axis=[rc, ry, rx]), tag="conv2d_nchw")
......@@ -4,8 +4,8 @@ import numpy as np
import scipy.signal
def conv2d_nchw_python(a_np, w_np, stride, padding):
"""Convolution operator in HWCN layout.
def _conv2d_nchw_python(a_np, w_np, stride, padding):
"""Convolution operator in NCHW layout.
Parameters
----------
......@@ -66,3 +66,36 @@ def conv2d_nchw_python(a_np, w_np, stride, padding):
apad, np.rot90(np.rot90(w_np[f, c])), mode='valid')
b_np[n, f] += out[::stride_h, ::stride_w]
return b_np
def conv2d_nchw_python(a_np, w_np, stride, padding, groups=1):
"""Convolution operator in NCHW layout.
Parameters
----------
a_np : numpy.ndarray
4-D with shape [batch, in_channel, in_height, in_width]
w_np : numpy.ndarray
4-D with shape [num_filter, in_channel // groups, filter_height, filter_width]
stride : int or a list/tuple of two ints
Stride size, or [stride_height, stride_width]
padding : int or str or a list/tuple of two ints
Padding size, or ['VALID', 'SAME'], or [pad_height, pad_width]
groups : int
Number of groups
Returns
-------
b_np : np.ndarray
4-D with shape [batch, out_channel, out_height, out_width]
"""
a_slices = np.array_split(a_np, groups, axis=1)
w_slices = np.array_split(w_np, groups, axis=0)
b_slices = [_conv2d_nchw_python(a_slice, w_slice, stride, padding)
for a_slice, w_slice in zip(a_slices, w_slices)]
b_np = np.concatenate(b_slices, axis=1)
return b_np
"""Common utility for topi test"""
from tvm import autotvm
from tvm.autotvm.task.space import FallbackConfigEntity
def get_all_backend():
"""return all supported target
......@@ -10,3 +14,14 @@ def get_all_backend():
"""
return ['llvm', 'cuda', 'opencl', 'metal', 'rocm', 'vulkan', 'nvptx',
'llvm -device=arm_cpu', 'opencl -device=mali', 'aocl_sw_emu']
class NCHWcInt8Fallback(autotvm.FallbackContext):
def _query_inside(self, target, workload):
key = (target, workload)
if key in self.memory:
return self.memory[key]
cfg = FallbackConfigEntity()
cfg.template_key = 'int8'
self.memory[key] = cfg
return cfg
......@@ -9,7 +9,7 @@ import topi.testing
from tvm.contrib.pickle_memoize import memoize
from topi.util import get_const_tuple
from common import get_all_backend
from common import get_all_backend, NCHWcInt8Fallback
oc_block_factor = 4
......@@ -88,17 +88,6 @@ def verify_conv2d_NCHWc_int8(batch, in_channel, in_size, num_filter, kernel, str
check_device(device)
class NCHWcInt8Fallback(autotvm.FallbackContext):
def _query_inside(self, target, workload):
key = (target, workload)
if key in self.memory:
return self.memory[key]
cfg = FallbackConfigEntity()
cfg.template_key = 'int8'
self.memory[key] = cfg
return cfg
def test_conv2d_nchw():
with NCHWcInt8Fallback():
# ResNet18 workloads where channels in / out are multiple of oc_block_factor
......
"""Example code to do group convolution."""
import numpy as np
import tvm
from tvm import autotvm
from tvm.autotvm.task.space import FallbackConfigEntity
import topi
import topi.testing
from tvm.contrib.pickle_memoize import memoize
from topi.util import get_const_tuple
from common import get_all_backend, NCHWcInt8Fallback
def verify_group_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation, groups, add_bias=False, add_relu=False):
print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d, %d)" %
(batch, in_channel, in_size, num_filter,
kernel, stride, padding, dilation, groups))
in_height = in_width = in_size
A = tvm.placeholder((batch, in_channel, in_height, in_width), name='A')
W = tvm.placeholder((num_filter, in_channel // groups, kernel, kernel), name='W')
bias = tvm.placeholder((num_filter, 1, 1), name='bias')
a_shape = get_const_tuple(A.shape)
w_shape = get_const_tuple(W.shape)
bias_shape = get_const_tuple(bias.shape)
dtype = A.dtype
@memoize("topi.tests.test_topi_group_conv2d.verify_group_conv2d_nchw")
def get_ref_data():
a_np = np.random.uniform(size=a_shape).astype(dtype)
w_np = np.random.uniform(size=w_shape).astype(dtype)
b_np = np.random.uniform(size=bias_shape).astype(dtype)
dw_np = topi.testing.dilate_python(w_np, (1, 1, dilation, dilation))
c_np = topi.testing.conv2d_nchw_python(a_np, dw_np, stride, padding, groups).astype(dtype)
if add_bias:
b_np = np.random.uniform(size=bias_shape).astype(dtype)
c_np += b_np
if add_relu:
c_np = np.maximum(c_np, 0)
return a_np, w_np, b_np, c_np
a_np, w_np, b_np, c_np = get_ref_data()
def check_device(device):
ctx = tvm.context(device, 0)
if not ctx.exist:
print("Skip because %s is not enabled" % device)
return
if device == "cuda" and not tvm.contrib.nvcc.have_int8(ctx.compute_version):
print("Skip because int8 intrinsics are not available")
return
print("Running on target: %s" % device)
with tvm.target.create(device):
C = topi.nn.group_conv2d_nchw(A, W, stride, padding, dilation, groups, out_dtype=dtype)
if add_bias:
C = topi.add(C, bias)
if add_relu:
C = topi.nn.relu(C)
s = topi.generic.schedule_group_conv2d_nchw([C])
a = tvm.nd.array(a_np, ctx)
w = tvm.nd.array(w_np, ctx)
b = tvm.nd.array(b_np, ctx)
c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx)
if add_bias:
func = tvm.build(s, [A, W, bias, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d_%d" %\
(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation, groups))
func(a, w, b, c)
else:
func = tvm.build(s, [A, W, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d_%d" % \
(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation, groups))
func(a, w, c)
tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-5)
for device in ["llvm"]:
check_device(device)
oc_block_factor = 4
def verify_group_conv2d_NCHWc_int8(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation, groups, add_bias=False, add_relu=False):
print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d, %d)" %
(batch, in_channel, in_size, num_filter,
kernel, stride, padding, dilation, groups))
in_height = in_width = in_size
A = tvm.placeholder((batch, in_channel, in_height, in_width), name='A', dtype='int8')
W = tvm.placeholder((num_filter, in_channel // groups, kernel, kernel), name='W', dtype='int8')
bias = tvm.placeholder((num_filter // oc_block_factor, 1, 1, oc_block_factor), name='bias',
dtype='int8')
a_shape = get_const_tuple(A.shape)
w_shape = get_const_tuple(W.shape)
bias_shape = get_const_tuple(bias.shape)
dtype = A.dtype
@memoize("topi.tests.test_topi_group_conv2d.verify_group_conv2d_NCHWc_int8")
def get_ref_data():
a_np = np.random.randint(low=-128, high=127, size=a_shape).astype(dtype)
w_np = np.random.randint(low=-128, high=128, size=w_shape).astype(dtype)
b_np = np.random.uniform(size=bias_shape).astype(dtype)
dw_np = topi.testing.dilate_python(w_np, (1, 1, dilation, dilation))
c_np = topi.testing.conv2d_nchw_python(a_np, dw_np, stride, padding, groups).astype(dtype)
# convert to NCHWc
_, _, out_height, out_width = c_np.shape
c_np = c_np.reshape((batch, num_filter // oc_block_factor, oc_block_factor, \
out_height, out_width)).transpose(0, 1, 3, 4, 2)
if add_bias:
b_np = np.random.uniform(size=bias_shape).astype(dtype)
c_np += b_np
if add_relu:
c_np = np.maximum(c_np, 0)
return a_np, w_np, b_np, c_np
a_np, w_np, b_np, c_np = get_ref_data()
def check_device(device):
ctx = tvm.context(device, 0)
if not ctx.exist:
print("Skip because %s is not enabled" % device)
return
if device == "cuda" and not tvm.contrib.nvcc.have_int8(ctx.compute_version):
print("Skip because int8 intrinsics are not available")
return
print("Running on target: %s" % device)
with tvm.target.create(device):
C = topi.nn.group_conv2d_nchw(A, W, stride, padding, dilation, groups, out_dtype=dtype)
if add_bias:
C = topi.add(C, bias)
if add_relu:
C = topi.nn.relu(C)
s = topi.generic.schedule_group_conv2d_nchw([C])
a = tvm.nd.array(a_np, ctx)
w = tvm.nd.array(w_np, ctx)
b = tvm.nd.array(b_np, ctx)
c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx)
if add_bias:
func = tvm.build(s, [A, W, bias, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d_%d" %\
(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation, groups))
func(a, w, b, c)
else:
func = tvm.build(s, [A, W, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d_%d" % \
(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation, groups))
func(a, w, c)
tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-5)
for device in ["cuda"]:
check_device(device)
def test_group_conv2d_nchw():
# ResNeXt-50 workload
verify_group_conv2d_nchw(1, 128, 56, 128, 3, 1, 1, 1, 32)
verify_group_conv2d_nchw(1, 256, 56, 256, 3, 2, 1, 1, 32)
verify_group_conv2d_nchw(1, 256, 28, 256, 3, 1, 1, 1, 32)
verify_group_conv2d_nchw(1, 512, 28, 512, 3, 2, 1, 1, 32)
verify_group_conv2d_nchw(1, 512, 14, 512, 3, 1, 1, 1, 32)
verify_group_conv2d_nchw(1, 1024, 14, 1024, 3, 2, 1, 1, 32)
verify_group_conv2d_nchw(1, 1024, 7, 1024, 3, 1, 1, 1, 32)
# bias, relu
verify_group_conv2d_nchw(1, 128, 56, 128, 3, 1, 1, 1, 32, add_relu=True)
verify_group_conv2d_nchw(1, 128, 56, 128, 3, 1, 1, 1, 32, add_bias=True)
verify_group_conv2d_nchw(1, 128, 56, 128, 3, 1, 1, 1, 32, add_relu=True,
add_bias=True)
# dilation
verify_group_conv2d_NCHWc_int8(1, 128, 56, 128, 3, 1, 1, 2, 32)
# batch size
verify_group_conv2d_nchw(2, 128, 56, 128, 3, 1, 1, 1, 32)
verify_group_conv2d_nchw(9, 128, 56, 128, 3, 1, 1, 1, 32)
def test_group_conv2d_NCHWc_int8():
with NCHWcInt8Fallback():
# ResNeXt-50 workload
verify_group_conv2d_NCHWc_int8(1, 128, 56, 128, 3, 1, 1, 1, 32)
verify_group_conv2d_NCHWc_int8(1, 256, 56, 256, 3, 2, 1, 1, 32)
verify_group_conv2d_NCHWc_int8(1, 256, 28, 256, 3, 1, 1, 1, 32)
verify_group_conv2d_NCHWc_int8(1, 512, 28, 512, 3, 2, 1, 1, 32)
verify_group_conv2d_NCHWc_int8(1, 512, 14, 512, 3, 1, 1, 1, 32)
verify_group_conv2d_NCHWc_int8(1, 1024, 14, 1024, 3, 2, 1, 1, 32)
verify_group_conv2d_NCHWc_int8(1, 1024, 7, 1024, 3, 1, 1, 1, 32)
# bias, relu
verify_group_conv2d_NCHWc_int8(1, 128, 56, 128, 3, 1, 1, 1, 32, add_relu=True)
verify_group_conv2d_NCHWc_int8(1, 128, 56, 128, 3, 1, 1, 1, 32, add_bias=True)
verify_group_conv2d_NCHWc_int8(1, 128, 56, 128, 3, 1, 1, 1, 32, add_relu=True,
add_bias=True)
# dilation
verify_group_conv2d_NCHWc_int8(1, 128, 56, 128, 3, 1, 1, 2, 32)
# batch size
verify_group_conv2d_NCHWc_int8(2, 128, 56, 128, 3, 1, 1, 1, 32)
verify_group_conv2d_NCHWc_int8(9, 128, 56, 128, 3, 1, 1, 1, 32)
if __name__ == "__main__":
test_group_conv2d_nchw()
test_group_conv2d_NCHWc_int8()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment