Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
5b37d4c1
Unverified
Commit
5b37d4c1
authored
Apr 11, 2020
by
Samuel
Committed by
GitHub
Apr 11, 2020
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[PYTORCH]Abs, Arange, Softplus ops (#5295)
* [PYTHON]Abs, Arange, Softplus ops * Review comments updated
parent
403929f9
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
118 additions
and
0 deletions
+118
-0
python/tvm/relay/frontend/pytorch.py
+52
-0
tests/python/frontend/pytorch/test_forward.py
+66
-0
No files found.
python/tvm/relay/frontend/pytorch.py
View file @
5b37d4c1
...
...
@@ -57,6 +57,33 @@ def _elemwise(name):
return
get_relay_op
(
name
)(
data0
,
data1
)
return
_impl
def
_abs
():
def
_impl
(
inputs
,
input_types
):
data
=
inputs
[
0
]
return
_op
.
abs
(
data
)
return
_impl
def
_arange
():
def
_impl
(
inputs
,
input_types
):
if
len
(
inputs
)
==
5
:
dtype
=
"float"
if
"float"
in
input_types
[
0
:
1
]
else
_convert_dtype_value
(
inputs
[
1
])
start
=
_create_typed_const
(
0
,
dtype
)
stop
=
_create_typed_const
(
inputs
[
0
],
dtype
)
step
=
_create_typed_const
(
1
,
dtype
)
elif
len
(
inputs
)
==
7
:
dtype
=
"float"
if
"float"
in
input_types
[
0
:
3
]
else
_convert_dtype_value
(
inputs
[
3
])
start
=
_create_typed_const
(
inputs
[
0
],
dtype
)
stop
=
_create_typed_const
(
inputs
[
1
],
dtype
)
step
=
_create_typed_const
(
inputs
[
2
],
dtype
)
else
:
msg
=
"Unknown number of arguments (
%
d) to parse."
%
(
len
(
inputs
))
raise
AssertionError
(
msg
)
return
_op
.
transform
.
arange
(
start
=
start
,
stop
=
stop
,
step
=
step
,
dtype
=
_convert_data_type
(
dtype
))
return
_impl
def
_squeeze
():
def
_impl
(
inputs
,
input_types
):
data
=
inputs
[
0
]
...
...
@@ -732,6 +759,13 @@ def _sigmoid():
return
_op
.
tensor
.
sigmoid
(
data
)
return
_impl
def
_softplus
():
def
_impl
(
inputs
,
input_types
):
data
=
inputs
[
0
]
beta
=
_expr
.
const
(
float
(
inputs
[
1
]))
return
_op
.
log
(
_op
.
exp
(
inputs
[
0
]
*
beta
)
+
_expr
.
const
(
1.
))
/
beta
return
_impl
def
_avg_pool2d
():
def
_impl
(
inputs
,
input_types
):
data
=
inputs
[
0
]
...
...
@@ -1044,6 +1078,21 @@ def _Float():
return
_impl
# Helper functions for operator implementation
def
_convert_dtype_value
(
val
):
convert_torch_dtype_map
=
{
7
:
"torch.float64"
,
6
:
"torch.float32"
,
5
:
"torch.float16"
,
4
:
"torch.int64"
,
3
:
"torch.int32"
,
2
:
"torch.int16"
,
1
:
"torch.int8"
,
0
:
"torch.unit8"
,
None
:
"torch.int64"
}
# Default is torch.int64
if
val
in
convert_torch_dtype_map
:
return
convert_torch_dtype_map
[
val
]
else
:
msg
=
"Torch data type value
%
d is not handled yet."
%
(
val
)
raise
NotImplementedError
(
msg
)
def
_convert_data_type
(
input_type
):
if
input_type
in
[
"double"
,
"torch.float64"
]:
...
...
@@ -1118,6 +1167,8 @@ _convert_map = {
"aten::pow"
:
_elemwise
(
"power"
),
"aten::div"
:
_elemwise
(
"divide"
),
"aten::div_"
:
_elemwise
(
"divide"
),
"aten::abs"
:
_abs
(),
"aten::arange"
:
_arange
(),
"aten::ones"
:
_ones
(),
"aten::zeros"
:
_zeros
(),
"aten::reciprocal"
:
_reciprocal
(),
...
...
@@ -1167,6 +1218,7 @@ _convert_map = {
"aten::clone"
:
_clone
(),
"aten::log_softmax"
:
_log_softmax
(),
"aten::sigmoid"
:
_sigmoid
(),
"aten::softplus"
:
_softplus
(),
"aten::avg_pool2d"
:
_avg_pool2d
(),
"aten::avg_pool3d"
:
_avg_pool3d
(),
"aten::dropout"
:
_dropout
(),
...
...
tests/python/frontend/pytorch/test_forward.py
View file @
5b37d4c1
...
...
@@ -375,6 +375,54 @@ def test_forward_squeeze():
verify_model
(
Squeeze1
()
.
float
()
.
eval
(),
input_data
=
input_data
)
verify_model
(
Squeeze2
()
.
float
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_arange
():
torch
.
set_grad_enabled
(
False
)
class
Arange1
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
arange
(
5
)
class
Arange2
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
arange
(
2.5
)
class
Arange3
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
arange
(
1
,
4
)
class
Arange4
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
arange
(
1
,
2.5
,
0.5
)
class
Arange5
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
arange
(
1
,
2
,
1
,
dtype
=
torch
.
int32
)
class
Arange6
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
arange
(
start
=
1
,
end
=
6
,
step
=
2
)
class
Arange7
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
arange
(
1
,
4
,
dtype
=
torch
.
float32
)
class
Arange8
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
arange
(
1
,
2
,
1
,
dtype
=
torch
.
int16
)
verify_model
(
Arange1
()
.
float
()
.
eval
())
verify_model
(
Arange2
()
.
float
()
.
eval
())
verify_model
(
Arange3
()
.
float
()
.
eval
())
verify_model
(
Arange4
()
.
float
()
.
eval
())
verify_model
(
Arange5
()
.
float
()
.
eval
())
verify_model
(
Arange6
()
.
float
()
.
eval
())
verify_model
(
Arange7
()
.
float
()
.
eval
())
verify_model
(
Arange8
()
.
float
()
.
eval
())
def
test_forward_abs
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
2
,
1
,
10
,
1
,
10
]
class
Abs1
(
Module
):
def
forward
(
self
,
*
args
):
return
args
[
0
]
.
abs
()
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
Abs1
()
.
float
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_concatenate
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
1
,
3
,
10
,
10
]
...
...
@@ -445,6 +493,20 @@ def test_forward_selu():
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
torch
.
nn
.
SELU
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_softplus
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
1
,
3
,
10
,
10
]
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
torch
.
nn
.
Softplus
()
.
eval
(),
input_data
=
input_data
)
verify_model
(
torch
.
nn
.
Softplus
(
beta
=
1.5
,
threshold
=
20
)
.
eval
(),
input_data
=
input_data
)
verify_model
(
torch
.
nn
.
Softplus
(
beta
=
5
,
threshold
=
10
)
.
eval
(),
input_data
=
input_data
)
def
test_forward_softsign
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
1
,
3
,
10
,
10
]
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
torch
.
nn
.
Softsign
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_log_sigmoid
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
10
,
10
]
...
...
@@ -1254,6 +1316,8 @@ if __name__ == "__main__":
test_forward_view
()
test_forward_select
()
test_forward_clone
()
test_forward_softplus
()
test_forward_softsign
()
test_forward_logsoftmax
()
test_forward_sigmoid
()
test_forward_dense
()
...
...
@@ -1264,6 +1328,8 @@ if __name__ == "__main__":
test_forward_mean
()
test_forward_expand
()
test_forward_pow
()
test_forward_abs
()
test_forward_arange
()
test_forward_chunk
()
test_forward_split
()
test_upsample
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment