Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
584a32ae
Commit
584a32ae
authored
May 31, 2019
by
Balint Cristian
Committed by
Wuwei Lin
May 31, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay] Handle float16 constants & fix BatchNorm (#3260)
parent
c8a0f524
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
24 additions
and
12 deletions
+24
-12
src/relay/pass/pattern_util.h
+11
-0
src/relay/pass/simplify_inference.cc
+4
-4
tests/python/relay/test_pass_simplify_inference.py
+9
-8
No files found.
src/relay/pass/pattern_util.h
View file @
584a32ae
...
...
@@ -27,6 +27,7 @@
#ifndef TVM_RELAY_PASS_PATTERN_UTIL_H_
#define TVM_RELAY_PASS_PATTERN_UTIL_H_
#include <builtin_fp16.h>
#include <tvm/data_layout.h>
#include <tvm/relay/op.h>
#include <tvm/relay/expr.h>
...
...
@@ -49,6 +50,9 @@ namespace relay {
} else if (type == Float(32)) { \
typedef float DType; \
{__VA_ARGS__} \
} else if (type == Float(16)) { \
typedef uint16_t DType; \
{__VA_ARGS__} \
} else if (type == Int(64)) { \
typedef int64_t DType; \
{__VA_ARGS__} \
...
...
@@ -204,7 +208,14 @@ template<typename T>
inline
Constant
MakeConstantScalar
(
DataType
dtype
,
T
value
)
{
runtime
::
NDArray
arr
=
runtime
::
NDArray
::
Empty
({},
Type2TVMType
(
dtype
),
{
kDLCPU
,
0
});
TVM_DTYPE_DISPATCH
(
dtype
,
DType
,
{
if
(
dtype
==
Float
(
16
))
{
// convert to float16
// storage is uint16_t
*
static_cast
<
DType
*>
(
arr
->
data
)
=
__truncXfYf2__
<
float
,
uint32_t
,
23
,
uint16_t
,
uint16_t
,
10
>
(
static_cast
<
float
>
(
value
));
}
else
{
*
static_cast
<
DType
*>
(
arr
->
data
)
=
value
;
}
})
return
ConstantNode
::
make
(
arr
);
}
...
...
src/relay/pass/simplify_inference.cc
View file @
584a32ae
...
...
@@ -36,11 +36,13 @@ Expr BatchNormToInferUnpack(const Attrs attrs,
Expr
moving_mean
,
Expr
moving_var
,
Type
tdata
)
{
auto
ttype
=
tdata
.
as
<
TensorTypeNode
>
();
CHECK
(
ttype
);
const
auto
param
=
attrs
.
as
<
BatchNormAttrs
>
();
Expr
epsilon
=
MakeConstantScalar
(
Float
(
32
)
,
static_cast
<
float
>
(
param
->
epsilon
));
Expr
epsilon
=
MakeConstantScalar
(
ttype
->
dtype
,
static_cast
<
float
>
(
param
->
epsilon
));
Expr
var_add_eps
=
Add
(
moving_var
,
epsilon
);
Expr
sqrt_var
=
Sqrt
(
var_add_eps
);
Expr
scale
=
Divide
(
MakeConstantScalar
(
Float
(
32
)
,
1.0
f
),
sqrt_var
);
Expr
scale
=
Divide
(
MakeConstantScalar
(
ttype
->
dtype
,
1.0
f
),
sqrt_var
);
if
(
param
->
scale
)
{
scale
=
Multiply
(
scale
,
gamma
);
...
...
@@ -52,8 +54,6 @@ Expr BatchNormToInferUnpack(const Attrs attrs,
}
int
axis
=
param
->
axis
;
auto
ttype
=
tdata
.
as
<
TensorTypeNode
>
();
CHECK
(
ttype
);
auto
ndim
=
ttype
->
shape
.
size
();
scale
=
ExpandBiasToMatchAxis
(
scale
,
ndim
,
{
axis
});
shift
=
ExpandBiasToMatchAxis
(
shift
,
ndim
,
{
axis
});
...
...
tests/python/relay/test_pass_simplify_inference.py
View file @
584a32ae
...
...
@@ -17,12 +17,12 @@
from
tvm
import
relay
as
rly
from
tvm.relay.ir_pass
import
simplify_inference
,
alpha_equal
def
test_simplify_batchnorm
():
def
test_simplify_batchnorm
(
dtype
=
'float32'
):
def
simple_bn
(
x
,
gamma
,
beta
,
moving_mean
,
moving_var
,
axis
=
1
,
epsilon
=
1e-5
,
shape
=
None
):
# expect = (x - moving_mean) / sqrt(moving_var + eps) * gamma + beta
scale
=
rly
.
multiply
(
rly
.
const
(
1
,
'float32'
)
/
rly
.
sqrt
(
moving_var
+
rly
.
const
(
epsilon
,
'float32'
)),
gamma
)
scale
=
rly
.
multiply
(
rly
.
const
(
1
,
dtype
)
/
rly
.
sqrt
(
moving_var
+
rly
.
const
(
epsilon
,
dtype
)),
gamma
)
shift
=
rly
.
add
(
rly
.
multiply
(
rly
.
negative
(
moving_mean
),
scale
),
beta
)
num_newaxis
=
len
(
shape
)
-
(
axis
+
1
)
...
...
@@ -33,8 +33,8 @@ def test_simplify_batchnorm():
def
check
(
dim
,
axis
,
nstep
):
eps
=
0.01
ttype1
=
rly
.
TensorType
(
tuple
(
10
for
i
in
range
(
dim
)),
'float32'
)
ttype2
=
rly
.
TensorType
((
10
,),
'float32'
)
ttype1
=
rly
.
TensorType
(
tuple
(
10
for
i
in
range
(
dim
)),
dtype
)
ttype2
=
rly
.
TensorType
((
10
,),
dtype
)
x
=
rly
.
var
(
"x"
,
ttype1
)
beta
=
rly
.
var
(
"beta"
,
ttype2
)
gamma
=
rly
.
var
(
"gamma"
,
ttype2
)
...
...
@@ -43,10 +43,10 @@ def test_simplify_batchnorm():
y1
,
y2
=
x
,
x
for
_
in
range
(
nstep
):
y1
,
_
,
_
=
rly
.
nn
.
batch_norm
(
y1
+
rly
.
const
(
1
,
'float32'
),
y1
,
_
,
_
=
rly
.
nn
.
batch_norm
(
y1
+
rly
.
const
(
1
,
dtype
),
gamma
,
beta
,
moving_mean
,
moving_var
,
epsilon
=
eps
,
axis
=
axis
)
y1
=
rly
.
nn
.
dropout
(
y1
)
y2
=
simple_bn
(
y2
+
rly
.
const
(
1
,
'float32'
),
y2
=
simple_bn
(
y2
+
rly
.
const
(
1
,
dtype
),
gamma
,
beta
,
moving_mean
,
moving_var
,
epsilon
=
eps
,
axis
=
axis
,
shape
=
ttype1
.
shape
)
y1
=
rly
.
ir_pass
.
infer_type
(
y1
)
...
...
@@ -60,4 +60,5 @@ def test_simplify_batchnorm():
if
__name__
==
"__main__"
:
test_simplify_batchnorm
()
test_simplify_batchnorm
(
dtype
=
'float32'
)
test_simplify_batchnorm
(
dtype
=
'float16'
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment