Commit 53d24311 by Zhi Committed by Yizhi Liu

Separate fusion and Compilation (#1564)

* Separate fusion and compilation

* fix description of graph_fuse.h

* fix lint

* fix @masahi 's comments, move fusion out of target

* fix graph passing and make fused_entries singula in graph attr

* fix typo

* fix some comments

* run test again

* remove rvalue for graphfuse and graphfindfusiablegroups
parent c9f9a3f9
......@@ -298,8 +298,10 @@ def build(graph, target=None, shape=None, dtype="float32",
else:
graph._set_json_attr("opt_level", 0, "int")
graph = graph.apply("InferShape").apply("InferType")
graph = graph.apply("GraphFindFusibleGroups")
graph = graph.apply("GraphFuse")
with target:
graph = graph.apply("GraphFusePartition").apply("GraphFuseCompile")
graph = graph.apply("GraphCompile")
libmod = graph_attr._move_out_module(graph, "module")
# Write variable initial values into params
if init_var:
......
/*!
* Copyright (c) 2018 by Contributors
* \file graph_compile.cc
* \brief Compile a graph. It lowers the graph nodes into low level IR.
*/
#include <dmlc/parameter.h>
#include <nnvm/compiler/packed_func_ext.h>
#include <nnvm/graph.h>
#include <nnvm/graph_attr_types.h>
#include <nnvm/node.h>
#include <nnvm/op_attr_types.h>
#include <nnvm/pass.h>
#include <nnvm/pass_functions.h>
#include <nnvm/tuple.h>
#include <tvm/lowered_func.h>
#include <tvm/runtime/packed_func.h>
#include "compile_engine.h"
#include "graph_fuse.h"
#include "graph_runtime.h"
#include "pattern_util.h"
namespace nnvm {
namespace compiler {
using namespace tvm;
// Decorate the result of PlanMemory
// This function does two things:
// - Give separate memory to each variable.
// - Tie the memory of output/lhs in assign node properly
// so the execution of assign can have side effect.
nnvm::Graph DecorateMemoryPlan(
nnvm::Graph g,
const std::vector<int>& assign_flag) {
const IndexedGraph& idx = g.indexed_graph();
StorageVector storage_vec = g.MoveCopyAttr<StorageVector>("storage_id");
g.attrs.erase("storage_allocated_bytes");
g.attrs.erase("storage_inplace_index");
size_t num_not_allocated = g.MoveCopyAttr<size_t>(
"storage_num_not_allocated");
CHECK_EQ(num_not_allocated, 0U)
<< "Can only build inference graph with all statically allocated memory";
// Reassign variable id so that they are different.
int max_id = 0;
for (size_t i = 0; i < storage_vec.size(); ++i) {
max_id = std::max(storage_vec[i] + 1, max_id);
}
for (uint32_t nid : idx.input_nodes()) {
storage_vec[idx.entry_id(nid, 0)] = max_id++;
}
// Tie up the assign node storage properly.
for (uint32_t nid = 0 ; nid < idx.num_nodes(); ++nid) {
if (assign_flag[nid] == 0) continue;
const auto& inode = idx[nid];
int var_storage_id = storage_vec[idx.entry_id(inode.inputs[0])];
storage_vec[idx.entry_id(nid, 0)] = var_storage_id;
if (assign_flag[nid] == 2) {
storage_vec[idx.entry_id(inode.inputs[1])] = var_storage_id;
}
}
g.attrs["storage_id"] = std::make_shared<any>(std::move(storage_vec));
return g;
}
nnvm::Graph GraphCompile(const nnvm::Graph& g) {
// Get attributes from the graph.
const ShapeVector& shape_vec = g.GetAttr<ShapeVector>("shape");
const DTypeVector& dtype_vec = g.GetAttr<DTypeVector>("dtype");
const GroupVec& group_vec = g.GetAttr<GroupVec>("group_root");
const MasterVec& master_vec = g.GetAttr<MasterVec>("group_master");
const PatternVec& pattern_vec = g.GetAttr<PatternVec>("pattern");
CHECK(g.HasAttr("fused_entry")) << "Fusion hasn't been applied yet.";
FuseEntryVec fuse_entries = g.GetAttr<FuseEntryVec>("fused_entry");
std::string target = g.GetAttr<std::string>("target");
std::string target_host;
if (g.HasAttr("target_host")) {
target_host = g.GetAttr<std::string>("target_host");
}
// Specially handle assign.
const nnvm::Op* assign_op = nnvm::Op::Get("_assign");
// Start lowering.
Array<tvm::LoweredFunc> func_list;
std::unordered_set<const tvm::Node*> func_set;
const IndexedGraph& idx = g.indexed_graph();
for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) {
const auto& inode = idx[nid];
if (inode.source->is_variable()) continue;
int root_id = group_vec[nid];
if (static_cast<int>(nid) != root_id) continue;
int master = master_vec[root_id];
FuseEntry& fe = fuse_entries[root_id];
const IndexedGraph& subidx = fe.subgraph.indexed_graph();
CHECK_EQ(subidx.input_nodes().size(), fe.imap.size());
CHECK_EQ(subidx.input_nodes().size(), fe.input_info.size());
Array<Tensor> inputs;
for (uint32_t sub_input_id : subidx.input_nodes()) {
auto it = fe.input_info.find(subidx[sub_input_id].source);
inputs.push_back(it->second);
}
// Find master idx in the subgraph.
int sub_master_idx = 0;
for (uint32_t i = 0; i < subidx.num_nodes(); i++) {
if (subidx[i].source->op() == idx[master].source->op()) {
sub_master_idx = i;
break;
}
}
fe.compiled_func = GraphLower(fe.subgraph, inputs, target, sub_master_idx);
for (LoweredFunc f : fe.compiled_func->funcs) {
if (!func_set.count(f.get())) {
func_set.insert(f.get());
func_list.push_back(f);
}
}
}
const nnvm::Op* tvm_op = nnvm::Op::Get("tvm_op");
std::unordered_map<uint32_t, nnvm::NodePtr> old_new;
for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) {
const auto& inode = idx[nid];
if (inode.source->is_variable()) {
// Only copy name since that is sufficient.
nnvm::NodePtr np = nnvm::Node::Create();
np->attrs.name = inode.source->attrs.name;
old_new[nid] = np;
continue;
}
int root_id = group_vec[nid];
if (static_cast<int>(nid) != root_id) continue;
// Handle normal op
FuseEntry& fe = fuse_entries[root_id];
const IndexedGraph& subidx = fe.subgraph.indexed_graph();
nnvm::NodePtr np = nnvm::Node::Create();
np->attrs.op = tvm_op;
np->attrs.name = inode.source->attrs.name;
TVMOpParam param;
param.func_name = fe.compiled_func->func_name;
param.num_inputs = static_cast<uint32_t>(fe.imap.size());
param.num_outputs = static_cast<uint32_t>(fe.subgraph.outputs.size());
param.flatten_data = fe.flatten_data;
param.UpdateDict(&(np->attrs.dict));
np->attrs.parsed = std::move(param);
for (uint32_t sub_input_id : subidx.input_nodes()) {
// Need to make sure subgraph input order is consistent to the order of
// the graph input.
auto rit = fe.reverse_imap.find(subidx[sub_input_id].source);
CHECK(rit != fe.reverse_imap.end());
const IndexedGraph::NodeEntry& e = rit->second;
auto it = old_new.find(e.node_id);
CHECK(it != old_new.end())
<< "cannot find node_id=" << e.node_id;
np->inputs.emplace_back(
nnvm::NodeEntry{it->second, e.index, e.version});
}
for (const uint32_t node_id : inode.control_deps) {
auto it = old_new.find(node_id);
CHECK(it != old_new.end());
np->control_deps.emplace_back(it->second);
}
old_new[nid] = np;
}
nnvm::Graph ret;
for (const auto& e : idx.outputs()) {
auto it = old_new.find(group_vec[e.node_id]);
CHECK(it != old_new.end())
<< "cannot find node_id=" << e.node_id;
ret.outputs.emplace_back(
nnvm::NodeEntry{it->second, e.index, e.version});
}
// Reference counter of each op node.
// For now, always store result when an op is referred more than once.
std::vector<uint32_t> ref_count = GetNodeRefCounts(idx);
for (const auto& e : idx.outputs()) {
// This line will realize all the outputs.
ref_count[e.node_id] += 1;
}
const IndexedGraph& new_idx = ret.indexed_graph();
// Handling assign:
//
// assign is a special operator that mutates the variable.
// Currently assign is implemented as output = copy(input[1])
// Then we run DecorageMemoryPlan to force
// output.storage = input[0].storage
//
std::vector<int> assign_flag(new_idx.num_nodes(), 0);
ShapeVector new_shape_vec = ShapeVector(new_idx.num_node_entries(), TShape());
DTypeVector new_dtype_vec = DTypeVector(new_idx.num_node_entries());
std::vector<std::string> new_dltype_vec(new_idx.num_node_entries());
for (const auto& kv : old_new) {
uint32_t nid = kv.first;
const auto& inode = idx[nid];
uint32_t new_nid = new_idx.node_id(kv.second.get());
if (inode.source->op() == assign_op) {
// Check if rhs of assign can be computed inplace.
// If yes, we can simply set that memory to be assign target
// and change assign to nop.
const IndexedGraph::NodeEntry& rhs = inode.inputs[1];
if (ref_count[rhs.node_id] <= 1 &&
!(idx[rhs.node_id].source->is_variable()) &&
pattern_vec[group_vec[rhs.node_id]] <= kBroadcast) {
assign_flag[new_nid] = 2;
TVMOpParam& param = dmlc::get<TVMOpParam>(kv.second->attrs.parsed);
param.func_name = "__nop";
param.UpdateDict(&(kv.second->attrs.dict));
} else {
assign_flag[new_nid] = 1;
}
}
for (uint32_t i = 0; i < inode.source->num_outputs(); ++i) {
uint32_t new_eid = new_idx.entry_id(new_idx.node_id(kv.second.get()), i);
uint32_t old_eid = idx.entry_id(nid, i);
new_shape_vec[new_eid] = shape_vec[old_eid];
new_dtype_vec[new_eid] = dtype_vec[old_eid];
new_dltype_vec[new_eid] = tvm::runtime::TVMType2String(
GetDLType(dtype_vec[old_eid]));
}
}
ret.attrs["shape"] = std::make_shared<any>(std::move(new_shape_vec));
ret.attrs["dtype"] = std::make_shared<any>(std::move(new_dtype_vec));
ret.attrs["dltype"] = std::make_shared<any>(std::move(new_dltype_vec));
// Setup module
static const PackedFunc& fbuild = GetPackedFunc("nnvm.compiler.build_target");
tvm::runtime::Module module = fbuild(func_list, target, target_host);
ret.attrs["module"] = std::make_shared<any>(std::move(module));
ret = nnvm::ApplyPass(ret, "PlanMemory");
ret = DecorateMemoryPlan(ret, assign_flag);
return ret;
}
NNVM_REGISTER_PASS(GraphCompile)
.set_body(GraphCompile)
.depend_graph_attr("shape")
.depend_graph_attr("dtype")
.depend_graph_attr("fused_entry")
.depend_graph_attr("group_root")
.depend_graph_attr("pattern")
.depend_graph_attr("group_master");
} // namespace compiler
} // namespace nnvm
......@@ -3,18 +3,19 @@
* \file graph_fuse.cc
* \brief Fuse the operators together.
*/
#include <dmlc/parameter.h>
#include <nnvm/compiler/packed_func_ext.h>
#include <nnvm/graph.h>
#include <nnvm/graph_attr_types.h>
#include <nnvm/node.h>
#include <nnvm/op_attr_types.h>
#include <nnvm/graph_attr_types.h>
#include <nnvm/tuple.h>
#include <nnvm/pass.h>
#include <nnvm/pass_functions.h>
#include <nnvm/compiler/packed_func_ext.h>
#include <tvm/runtime/packed_func.h>
#include <nnvm/tuple.h>
#include <tvm/lowered_func.h>
#include <dmlc/parameter.h>
#include "./compile_engine.h"
#include <tvm/runtime/packed_func.h>
#include "./graph_fuse.h"
#include "./graph_runtime.h"
#include "./pattern_util.h"
......@@ -22,28 +23,10 @@ namespace nnvm {
namespace compiler {
using namespace tvm;
// The single fuse rule.
enum class FuseRule {
kUknown,
kFuseToMaster,
kRealize
};
/*!
* \brief Get DLDataType from dtype flag.
*
* \param type_flag The data type flag
* \return corresponding DLDataType
*/
DLDataType GetDLType(int type_flag) {
return Type2TVMType(GetTVMType(type_flag));
}
// Partition the graph into segments
// Each segment will be compiled into one operator.
// Need also mark the property of the segment.
nnvm::Graph GraphFusePartition(nnvm::Graph g) {
// setup ref counter
// Also mark the property of the segment.
nnvm::Graph GraphFindFusibleGroups(nnvm::Graph g) {
const IndexedGraph& idx = g.indexed_graph();
int opt_level = 2;
if (g.attrs.count("opt_level") != 0) {
......@@ -61,7 +44,7 @@ nnvm::Graph GraphFusePartition(nnvm::Graph g) {
ref_count[e.node_id] += 1;
}
// Pattern for the subgraph
std::vector<TOpPattern> pattern_vec(idx.num_nodes(), kOpaque);
PatternVec pattern_vec(idx.num_nodes(), kOpaque);
// Whether node can be fused to parent.
std::vector<FuseRule> fuse_vec(idx.num_nodes(), FuseRule::kUknown);
// Master node id of fusion segment.
......@@ -77,7 +60,7 @@ nnvm::Graph GraphFusePartition(nnvm::Graph g) {
TOpPattern pt = op_pattern.get(inode.source->op(), kOpaque);
if (pt <= kBroadcast) {
// Try to check if we can fuse to the master.
// Check if we can fuse to the master.
int chosen_master = -1;
bool ewise = inode.source->num_outputs() == 1;
for (const auto& e : inode.inputs) {
......@@ -108,7 +91,7 @@ nnvm::Graph GraphFusePartition(nnvm::Graph g) {
pt = ewise ? kElemWise : kBroadcast;
}
} else if (pt == kInjective || pt == kCommReduce) {
// fuse to the comm reduce or injective
// Fuse to the comm reduce or injective
for (const auto& e : inode.inputs) {
if (fuse_vec[e.node_id] == FuseRule::kUknown) {
TOpPattern ipt = pattern_vec[e.node_id];
......@@ -123,7 +106,7 @@ nnvm::Graph GraphFusePartition(nnvm::Graph g) {
master_vec[nid] = nid;
}
} else {
// realize
// Realize
master_vec[nid] = nid;
for (const auto& e : inode.inputs) {
if (fuse_vec[e.node_id] == FuseRule::kUknown) {
......@@ -144,15 +127,15 @@ nnvm::Graph GraphFusePartition(nnvm::Graph g) {
}
}
// point to the group root id of each node
std::vector<int> group_vec(idx.num_nodes(), -1);
// Point to the group root id of each node.
GroupVec group_vec(idx.num_nodes(), -1);
for (uint32_t i = idx.num_nodes(); i != 0; --i) {
uint32_t nid = i - 1;
const auto& inode = idx[nid];
if (group_vec[nid] == -1) {
group_vec[nid] = nid;
}
// propagate the group id.
// Propagate the group id.
for (const auto& e : inode.inputs) {
if (fuse_vec[e.node_id] == FuseRule::kFuseToMaster) {
CHECK(group_vec[e.node_id] == -1||
......@@ -264,121 +247,43 @@ nnvm::Graph GraphFusePartition(nnvm::Graph g) {
return g;
}
NNVM_REGISTER_PASS(GraphFusePartition)
.set_body(GraphFusePartition)
NNVM_REGISTER_PASS(GraphFindFusibleGroups)
.set_body(GraphFindFusibleGroups)
.depend_graph_attr("shape")
.depend_graph_attr("dtype");
// Decorate the result of PlanMemory
// This function does two things:
// - Give separate memory to each variable
// - Tie the memory of output/lhs in assign node properly
// so the execution of assign can have side effect.
nnvm::Graph DecorateMemoryPlan(
nnvm::Graph g,
const std::vector<int>& assign_flag) {
// setup ref counter
const IndexedGraph& idx = g.indexed_graph();
StorageVector storage_vec = g.MoveCopyAttr<StorageVector>("storage_id");
g.attrs.erase("storage_allocated_bytes");
g.attrs.erase("storage_inplace_index");
size_t num_not_allocated = g.MoveCopyAttr<size_t>(
"storage_num_not_allocated");
CHECK_EQ(num_not_allocated, 0U)
<< "Can only build inference graph with all statically allocated memory";
// reassign variable id so that they are different.
int max_id = 0;
for (size_t i = 0; i < storage_vec.size(); ++i) {
max_id = std::max(storage_vec[i] + 1, max_id);
}
for (uint32_t nid : idx.input_nodes()) {
storage_vec[idx.entry_id(nid, 0)] = max_id++;
}
// tie up the assign node storage properly
for (uint32_t nid = 0 ; nid < idx.num_nodes(); ++nid) {
if (assign_flag[nid] == 0) continue;
const auto& inode = idx[nid];
int var_storage_id = storage_vec[idx.entry_id(inode.inputs[0])];
storage_vec[idx.entry_id(nid, 0)] = var_storage_id;
if (assign_flag[nid] == 2) {
storage_vec[idx.entry_id(inode.inputs[1])] = var_storage_id;
}
}
g.attrs["storage_id"] = std::make_shared<any>(std::move(storage_vec));
return g;
}
struct INodeEntryHash {
size_t operator()(const IndexedGraph::NodeEntry& e) const {
return e.node_id;
}
};
struct INodeEntryEqual {
size_t operator()(const IndexedGraph::NodeEntry& a,
const IndexedGraph::NodeEntry& b) const {
return a.node_id == b.node_id && a.index == b.index;
}
};
// Auxiliary data structure for representing fused op.
struct FuseEntry {
// subgraph of the fragement
Graph subgraph;
// The input map
std::unordered_map<IndexedGraph::NodeEntry, nnvm::NodeEntry,
INodeEntryHash, INodeEntryEqual> imap;
// reverse map to the old input entry
std::unordered_map<const Node*, IndexedGraph::NodeEntry> reverse_imap;
// TVM Placeholder for inputs
std::unordered_map<const Node*, Tensor> input_info;
// Whether we can flatten data
bool flatten_data;
// The corresponding function.
GraphFunc compiled_func;
};
// Fuse the partitioned graph into segments.
// Create a new graph with fused noded.
// Also inheritate attribute shape, dltype from previous graph.
nnvm::Graph GraphFuseCompile(nnvm::Graph g) {
// setup ref counter
// Create a new graph with fused nodes.
// Also inherit attribute shape, dltype from the previous graph.
nnvm::Graph GraphFuse(nnvm::Graph g) {
CHECK(g.HasAttr("group_root") && g.HasAttr("pattern"))
<< "GraphFindFusibleGroups pass hasn't been applied yet.";
const IndexedGraph& idx = g.indexed_graph();
// Get attributes from the graph
const ShapeVector& shape_vec = g.GetAttr<ShapeVector>("shape");
const DTypeVector& dtype_vec = g.GetAttr<DTypeVector>("dtype");
const std::vector<int>& group_vec = g.GetAttr<std::vector<int> >("group_root");
const std::vector<int>& master_vec = g.GetAttr<std::vector<int> >("group_master");
const std::vector<TOpPattern>& pattern_vec =
g.GetAttr<std::vector<TOpPattern> >("pattern");
std::string target = g.GetAttr<std::string>("target");
std::string target_host;
const GroupVec& group_vec = g.GetAttr<GroupVec>("group_root");
const PatternVec& pattern_vec = g.GetAttr<PatternVec>("pattern");
if (g.HasAttr("target_host")) {
target_host = g.GetAttr<std::string>("target_host");
}
// specially handle assign
// Specially handle assign op.
const nnvm::Op* assign_op = nnvm::Op::Get("_assign");
std::vector<FuseEntry> fuse_vec(idx.num_nodes());
// setup inputs and placeholder.
FuseEntryVec fuse_entries(idx.num_nodes());
// Setup inputs and placeholder.
for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) {
const auto& inode = idx[nid];
if (inode.source->is_variable()) continue;
CHECK_GE(group_vec[nid], 0);
int root_id = group_vec[nid];
FuseEntry& fe = fuse_vec[root_id];
FuseEntry& fe = fuse_entries[root_id];
fe.flatten_data = (pattern_vec[root_id] == kElemWise ||
inode.source->op() == assign_op);
for (const auto& e : inode.inputs) {
if (group_vec[e.node_id] != root_id && fe.imap.count(e) == 0) {
Array<Expr> shape;
if (fe.flatten_data) {
// elementwise support flatten
// Elementwise support flatten
int64_t prod = 1;
for (int64_t x : shape_vec[idx.entry_id(e)]) {
prod *= x;
......@@ -403,17 +308,18 @@ nnvm::Graph GraphFuseCompile(nnvm::Graph g) {
}
}
}
// Setup the Subgraph
std::vector<NodeEntry> subgraph_vec(idx.num_node_entries());
for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) {
const auto& inode = idx[nid];
if (inode.source->is_variable()) continue;
int root_id = group_vec[nid];
FuseEntry& fe = fuse_vec[root_id];
// copy and create subgraph node.
FuseEntry& fe = fuse_entries[root_id];
// Create a subgraph node.
NodePtr gnode = Node::Create();
gnode->attrs = inode.source->attrs;
// input loading
// Set input entries for the subgraph node.
for (const auto& e : inode.inputs) {
if (group_vec[e.node_id] != root_id) {
auto it = fe.imap.find(e);
......@@ -426,7 +332,7 @@ nnvm::Graph GraphFuseCompile(nnvm::Graph g) {
gnode->inputs.push_back(ne);
}
}
// schedule on root node, and use master's schedule
// Schedule on the root node and use the master's schedule
if (static_cast<int>(nid) != root_id) {
for (uint32_t index = 0; index < inode.source->num_outputs(); ++index) {
uint32_t eid = idx.entry_id(nid, index);
......@@ -438,165 +344,18 @@ nnvm::Graph GraphFuseCompile(nnvm::Graph g) {
}
}
}
// Start lowering
Array<tvm::LoweredFunc> func_list;
std::unordered_set<const tvm::Node*> func_set;
for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) {
const auto& inode = idx[nid];
if (inode.source->is_variable()) continue;
int root_id = group_vec[nid];
if (static_cast<int>(nid) != root_id) continue;
int master = master_vec[root_id];
FuseEntry& fe = fuse_vec[root_id];
const IndexedGraph& subidx = fe.subgraph.indexed_graph();
CHECK_EQ(subidx.input_nodes().size(), fe.imap.size());
CHECK_EQ(subidx.input_nodes().size(), fe.input_info.size());
Array<Tensor> inputs;
for (uint32_t sub_input_id : subidx.input_nodes()) {
auto it = fe.input_info.find(subidx[sub_input_id].source);
inputs.push_back(it->second);
}
// find master idx in subgraph
int sub_master_idx = 0;
for (uint32_t i = 0; i < subidx.num_nodes(); i++) {
if (subidx[i].source->op() == idx[master].source->op()) {
sub_master_idx = i;
break;
}
}
fe.compiled_func = GraphLower(fe.subgraph, inputs, target, sub_master_idx);
for (LoweredFunc f : fe.compiled_func->funcs) {
if (!func_set.count(f.get())) {
func_set.insert(f.get());
func_list.push_back(f);
}
}
}
const nnvm::Op* tvm_op = nnvm::Op::Get("tvm_op");
std::unordered_map<uint32_t, nnvm::NodePtr> old_new;
for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) {
const auto& inode = idx[nid];
if (inode.source->is_variable()) {
// only copy over name since that is sufficient.
nnvm::NodePtr np = nnvm::Node::Create();
np->attrs.name = inode.source->attrs.name;
old_new[nid] = np;
continue;
}
int root_id = group_vec[nid];
if (static_cast<int>(nid) != root_id) continue;
// Handle normal op
FuseEntry& fe = fuse_vec[root_id];
const IndexedGraph& subidx = fe.subgraph.indexed_graph();
nnvm::NodePtr np = nnvm::Node::Create();
np->attrs.op = tvm_op;
np->attrs.name = inode.source->attrs.name;
TVMOpParam param;
param.func_name = fe.compiled_func->func_name;
param.num_inputs = static_cast<uint32_t>(fe.imap.size());
param.num_outputs = static_cast<uint32_t>(fe.subgraph.outputs.size());
param.flatten_data = fe.flatten_data;
param.UpdateDict(&(np->attrs.dict));
np->attrs.parsed = std::move(param);
for (uint32_t sub_input_id : subidx.input_nodes()) {
// Need to make sure subgraph input order meets order of the graph input
auto rit = fe.reverse_imap.find(subidx[sub_input_id].source);
CHECK(rit != fe.reverse_imap.end());
const IndexedGraph::NodeEntry& e = rit->second;
auto it = old_new.find(e.node_id);
CHECK(it != old_new.end())
<< "cannot find node_id=" << e.node_id;
np->inputs.emplace_back(
nnvm::NodeEntry{it->second, e.index, e.version});
}
for (const uint32_t node_id : inode.control_deps) {
auto it = old_new.find(node_id);
CHECK(it != old_new.end());
np->control_deps.emplace_back(it->second);
}
old_new[nid] = np;
}
nnvm::Graph ret;
for (const auto& e : idx.outputs()) {
auto it = old_new.find(group_vec[e.node_id]);
CHECK(it != old_new.end())
<< "cannot find node_id=" << e.node_id;
ret.outputs.emplace_back(
nnvm::NodeEntry{it->second, e.index, e.version});
}
// Reference counter of each op node
// For now, always store result when an op is referred more than once.
std::vector<uint32_t> ref_count = GetNodeRefCounts(idx);
for (const auto& e : idx.outputs()) {
// this line will realize all the outputs
ref_count[e.node_id] += 1;
}
const IndexedGraph& new_idx = ret.indexed_graph();
// Handling assign:
//
// assign is a special operator that mutates the variable.
// Currently assign is implemented as output = copy(input[1])
// Then we run DecorageMemoryPlan to force
// output.storage = input[0].storage
//
std::vector<int> assign_flag(new_idx.num_nodes(), 0);
ShapeVector new_shape_vec = ShapeVector(new_idx.num_node_entries(), TShape());
DTypeVector new_dtype_vec = DTypeVector(new_idx.num_node_entries());
std::vector<std::string> new_dltype_vec(new_idx.num_node_entries());
for (const auto& kv : old_new) {
uint32_t nid = kv.first;
const auto& inode = idx[nid];
uint32_t new_nid = new_idx.node_id(kv.second.get());
if (inode.source->op() == assign_op) {
// Check if rhs of assign can be comute inplace
// If yes, we can simply set that memory to be assign target
// and change assign to nop
const IndexedGraph::NodeEntry& rhs = inode.inputs[1];
if (ref_count[rhs.node_id] <= 1 &&
!(idx[rhs.node_id].source->is_variable()) &&
pattern_vec[group_vec[rhs.node_id]] <= kBroadcast) {
assign_flag[new_nid] = 2;
TVMOpParam& param = dmlc::get<TVMOpParam>(kv.second->attrs.parsed);
param.func_name = "__nop";
param.UpdateDict(&(kv.second->attrs.dict));
} else {
assign_flag[new_nid] = 1;
}
}
for (uint32_t i = 0; i < inode.source->num_outputs(); ++i) {
uint32_t new_eid = new_idx.entry_id(new_idx.node_id(kv.second.get()), i);
uint32_t old_eid = idx.entry_id(nid, i);
new_shape_vec[new_eid] = shape_vec[old_eid];
new_dtype_vec[new_eid] = dtype_vec[old_eid];
new_dltype_vec[new_eid] = tvm::runtime::TVMType2String(
GetDLType(dtype_vec[old_eid]));
}
}
ret.attrs["shape"] = std::make_shared<any>(std::move(new_shape_vec));
ret.attrs["dtype"] = std::make_shared<any>(std::move(new_dtype_vec));
ret.attrs["dltype"] = std::make_shared<any>(std::move(new_dltype_vec));
// Setup module
static const PackedFunc& fbuild = GetPackedFunc("nnvm.compiler.build_target");
tvm::runtime::Module module = fbuild(func_list, target, target_host);
ret.attrs["module"] = std::make_shared<any>(std::move(module));
ret = nnvm::ApplyPass(ret, "PlanMemory");
ret = DecorateMemoryPlan(ret, assign_flag);
return ret;
g.attrs["fused_entry"] = std::make_shared<any>(std::move(fuse_entries));
return g;
}
NNVM_REGISTER_PASS(GraphFuseCompile)
.set_body(GraphFuseCompile);
NNVM_REGISTER_PASS(GraphFuse)
.set_body(GraphFuse)
.set_change_graph(true)
.provide_graph_attr("fused_entry")
.depend_graph_attr("shape")
.depend_graph_attr("dtype")
.depend_graph_attr("group_root")
.depend_graph_attr("group_master");
} // namespace compiler
} // namespace nnvm
/*!
* Copyright (c) 2018 by Contributors
* \file graph_fuse.h
* \brief Definition of structs used by graph fusion
*/
#ifndef NNVM_COMPILER_GRAPH_FUSE_H_
#define NNVM_COMPILER_GRAPH_FUSE_H_
#include <nnvm/graph.h>
#include <vector>
#include "compile_engine.h"
namespace nnvm {
namespace compiler {
// The single fuse rule.
enum class FuseRule {
kUknown,
kFuseToMaster,
kRealize
};
/*!
* \brief Get DLDataType from dtype flag.
*
* \param type_flag The data type flag
* \return corresponding DLDataType
*/
inline DLDataType GetDLType(int type_flag) {
return tvm::Type2TVMType(GetTVMType(type_flag));
}
struct INodeEntryHash {
size_t operator()(const IndexedGraph::NodeEntry& e) const {
return e.node_id;
}
};
struct INodeEntryEqual {
size_t operator()(const IndexedGraph::NodeEntry &a,
const IndexedGraph::NodeEntry &b) const {
return a.node_id == b.node_id && a.index == b.index;
}
};
// Auxiliary data structure for representing fused op.
struct FuseEntry {
// Subgraph of the fragment
Graph subgraph;
// The input map
std::unordered_map<IndexedGraph::NodeEntry, nnvm::NodeEntry, INodeEntryHash,
INodeEntryEqual>
imap;
// Reverse map to the old input entry
std::unordered_map<const Node *, IndexedGraph::NodeEntry> reverse_imap;
// TVM Placeholder for inputs
std::unordered_map<const Node *, Tensor> input_info;
// Whether we can flatten data
bool flatten_data;
// The corresponding function.
GraphFunc compiled_func;
};
// GroupVec stores the root node ids of the fused nodes.
using GroupVec = std::vector<int>;
// MasterVec stores master node ids of fused groups.
using MasterVec = std::vector<int>;
// FuseVec stores fused entries.
using FuseEntryVec = std::vector<FuseEntry>;
// PatternVec stores operator patterns.
using PatternVec = std::vector<TOpPattern>;
} // namespace compiler
} // namespace nnvm
#endif // NNVM_COMPILER_GRAPH_FUSE_H_
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment