Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
4e7b548e
Commit
4e7b548e
authored
Jul 09, 2018
by
Siju
Committed by
Tianqi Chen
Jul 08, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[DARKNET FRONTEND]Batchnorm added as part of Dense op for running rnn model for next wo… (#1385)
parent
6cdc18e2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
29 additions
and
6 deletions
+29
-6
nnvm/python/nnvm/frontend/darknet.py
+14
-6
nnvm/tests/python/frontend/darknet/test_forward.py
+15
-0
No files found.
nnvm/python/nnvm/frontend/darknet.py
View file @
4e7b548e
...
@@ -226,13 +226,18 @@ def _darknet_dense(inputs, attrs):
...
@@ -226,13 +226,18 @@ def _darknet_dense(inputs, attrs):
"""Process the dense operation."""
"""Process the dense operation."""
op_name
,
new_attrs
=
'dense'
,
{}
op_name
,
new_attrs
=
'dense'
,
{}
new_attrs
[
'units'
]
=
_darknet_required_attr
(
attrs
,
'num_hidden'
)
new_attrs
[
'units'
]
=
_darknet_required_attr
(
attrs
,
'num_hidden'
)
out_name
=
{}
if
attrs
.
get
(
'use_bias'
,
False
)
is
True
:
if
attrs
.
get
(
'use_bias'
,
False
)
is
True
:
new_attrs
[
'use_bias'
]
=
True
new_attrs
[
'use_bias'
]
=
True
if
attrs
.
get
(
'use_flatten'
,
False
)
is
True
:
if
attrs
.
get
(
'use_flatten'
,
False
)
is
True
:
inputs
[
0
]
=
_sym
.
flatten
(
inputs
[
0
])
inputs
[
0
]
=
_sym
.
flatten
(
inputs
[
0
])
sym
=
_darknet_get_nnvm_op
(
op_name
)(
*
inputs
,
**
new_attrs
)
sym
=
_darknet_get_nnvm_op
(
op_name
)(
*
inputs
,
**
new_attrs
)
out_name
=
sym
.
list_output_names
()[
0
]
.
replace
(
'_output'
,
''
)
out_name
[
0
]
=
sym
.
list_output_names
()[
0
]
.
replace
(
'_output'
,
''
)
if
'use_batchNorm'
in
attrs
:
op_name
,
new_attrs
=
'batch_norm'
,
{}
new_attrs
[
'epsilon'
]
=
0.000001
sym
=
_darknet_get_nnvm_op
(
op_name
)(
*
sym
,
**
new_attrs
)
out_name
[
1
]
=
sym
.
list_output_names
()[
0
]
.
replace
(
'_output'
,
''
)
if
'activation'
in
attrs
:
if
'activation'
in
attrs
:
new_attrs
=
{}
new_attrs
=
{}
new_attrs
[
'activation'
]
=
attrs
[
'activation'
]
new_attrs
[
'activation'
]
=
attrs
[
'activation'
]
...
@@ -430,13 +435,16 @@ def _get_connected_weights(layer, opname, params, dtype):
...
@@ -430,13 +435,16 @@ def _get_connected_weights(layer, opname, params, dtype):
weights
=
_read_memory_buffer
((
layer
.
outputs
,
layer
.
inputs
),
layer
.
weights
,
dtype
)
weights
=
_read_memory_buffer
((
layer
.
outputs
,
layer
.
inputs
),
layer
.
weights
,
dtype
)
biases
=
_read_memory_buffer
((
layer
.
outputs
,
),
layer
.
biases
,
dtype
)
biases
=
_read_memory_buffer
((
layer
.
outputs
,
),
layer
.
biases
,
dtype
)
k
=
_get_tvm_params_name
(
opname
,
'weight'
)
k
=
_get_tvm_params_name
(
opname
[
0
]
,
'weight'
)
params
[
k
]
=
tvm
.
nd
.
array
(
weights
)
params
[
k
]
=
tvm
.
nd
.
array
(
weights
)
k
=
_get_tvm_params_name
(
opname
,
'bias'
)
params
[
k
]
=
tvm
.
nd
.
array
(
biases
)
if
layer
.
batch_normalize
==
1
and
layer
.
dontloadscales
!=
1
:
if
layer
.
batch_normalize
==
1
and
layer
.
dontloadscales
!=
1
:
_get_batchnorm_weights
(
layer
,
opname
,
params
,
layer
.
outputs
,
dtype
)
_get_batchnorm_weights
(
layer
,
opname
[
1
],
params
,
layer
.
outputs
,
dtype
)
k
=
_get_tvm_params_name
(
opname
[
1
],
'beta'
)
params
[
k
]
=
tvm
.
nd
.
array
(
biases
)
else
:
k
=
_get_tvm_params_name
(
opname
[
0
],
'bias'
)
params
[
k
]
=
tvm
.
nd
.
array
(
biases
)
def
_get_batchnorm_weights
(
layer
,
opname
,
params
,
size
,
dtype
):
def
_get_batchnorm_weights
(
layer
,
opname
,
params
,
size
,
dtype
):
"""Parse the weights for batchnorm, which includes, scales, moving mean
"""Parse the weights for batchnorm, which includes, scales, moving mean
...
...
nnvm/tests/python/frontend/darknet/test_forward.py
View file @
4e7b548e
...
@@ -169,6 +169,20 @@ def test_forward_dense():
...
@@ -169,6 +169,20 @@ def test_forward_dense():
test_forward
(
net
)
test_forward
(
net
)
LIB
.
free_network
(
net
)
LIB
.
free_network
(
net
)
def
test_forward_dense_batchnorm
():
'''test fully connected layer with batchnorm'''
net
=
LIB
.
make_network
(
1
)
layer
=
LIB
.
make_connected_layer
(
1
,
12
,
2
,
1
,
1
,
0
)
for
i
in
range
(
5
):
layer
.
rolling_mean
[
i
]
=
np
.
random
.
rand
(
1
)
layer
.
rolling_variance
[
i
]
=
np
.
random
.
rand
(
1
)
layer
.
scales
[
i
]
=
np
.
random
.
rand
(
1
)
net
.
layers
[
0
]
=
layer
net
.
w
=
net
.
h
=
2
LIB
.
resize_network
(
net
,
2
,
2
)
test_forward
(
net
)
LIB
.
free_network
(
net
)
def
test_forward_maxpooling
():
def
test_forward_maxpooling
():
'''test maxpooling layer'''
'''test maxpooling layer'''
net
=
LIB
.
make_network
(
1
)
net
=
LIB
.
make_network
(
1
)
...
@@ -264,6 +278,7 @@ if __name__ == '__main__':
...
@@ -264,6 +278,7 @@ if __name__ == '__main__':
test_forward_batch_norm
()
test_forward_batch_norm
()
test_forward_shortcut
()
test_forward_shortcut
()
test_forward_dense
()
test_forward_dense
()
test_forward_dense_batchnorm
()
test_forward_reorg
()
test_forward_reorg
()
test_forward_region
()
test_forward_region
()
test_forward_elu
()
test_forward_elu
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment