Commit 4e29ec33 by Siva Committed by Tianqi Chen

[NNVM][TENSORFLOW] bug fix on bilinear and resize op integration in frontend. (#1440)

parent d93b72b5
...@@ -332,26 +332,14 @@ def _expand_dims(): ...@@ -332,26 +332,14 @@ def _expand_dims():
def _resize_bilinear(): def _resize_bilinear():
def _impl(inputs, attr, params): def _impl(inputs, attr, params):
# Change this when we have corresponding resize bilinear operation. attr['size'] = attr['_output_shapes'][0][1:3]
print("ResizeBilinear:Only NN (nearest neighbor) supported in symetric mode of dimensions")
print("Change this when we have corresponding resize bilinear operation")
# NHWC
input_shape = attr['_input_shapes'][inputs[0]][0]
in_hw = (input_shape[1], input_shape[2])
out_hw = params[inputs[1].list_output_names()[0]]
inputs.pop(1) inputs.pop(1)
# NHWC
attr['layout'] = 'NHWC' attr['layout'] = 'NHWC'
if in_hw[0] < 0 or in_hw[1] < 0: return AttrCvt(op_name="resize",
scale = 1 ignores=['Tdim'],
else: extras={'method': "BILINEAR"})(inputs, attr)
# Considering height alone for scale
scale = out_hw[0] / in_hw[0]
return AttrCvt(op_name="upsampling",
ignores=['Tdim', 'align_corners'],
extras={'scale': scale})(inputs, attr)
return _impl return _impl
def _check_numerics(): def _check_numerics():
......
...@@ -6,7 +6,6 @@ Some helper definitions for tensorflow models. ...@@ -6,7 +6,6 @@ Some helper definitions for tensorflow models.
""" """
import re import re
import os.path import os.path
import numpy as np
# Tensorflow imports # Tensorflow imports
import tensorflow as tf import tensorflow as tf
...@@ -107,52 +106,6 @@ class NodeLookup(object): ...@@ -107,52 +106,6 @@ class NodeLookup(object):
return '' return ''
return self.node_lookup[node_id] return self.node_lookup[node_id]
def read_normalized_tensor_from_image_file(file_name,
input_height=299,
input_width=299,
input_mean=0,
input_std=255):
""" Preprocessing of image
Parameters
----------
file_name: String
Image filename.
input_height: int
model input height.
input_width: int
model input width
input_mean: int
Mean to be substracted in normalization.
input_std: int
Standard deviation used in normalization.
Returns
-------
np_array: Numpy array
Normalized image data as a numpy array.
"""
input_name = "file_reader"
output_name = "normalized"
file_reader = tf.read_file(file_name, input_name)
image_reader = tf.image.decode_jpeg(file_reader, channels=3,
name='jpeg_reader')
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0)
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
tf.InteractiveSession()
np_array = normalized.eval()
return np_array
def get_workload(model_path): def get_workload(model_path):
""" Import workload from frozen protobuf """ Import workload from frozen protobuf
...@@ -181,79 +134,3 @@ def get_workload(model_path): ...@@ -181,79 +134,3 @@ def get_workload(model_path):
graph_def.ParseFromString(f.read()) graph_def.ParseFromString(f.read())
graph = tf.import_graph_def(graph_def, name='') graph = tf.import_graph_def(graph_def, name='')
return graph_def return graph_def
def get_workload_inception_v3():
""" Import Inception V3 workload from frozen protobuf
Parameters
----------
Nothing.
Returns
-------
(normalized, graph_def) : Tuple
normalized is normalized input for graph testing.
graph_def is the tensorflow workload for Inception V3.
"""
repo_base = 'https://github.com/dmlc/web-data/raw/master/tensorflow/models/InceptionV3/'
model_path = 'InceptionV3/inception_v3_2016_08_28_frozen-with_shapes.pb'
image_name = 'elephant-299.jpg'
image_url = os.path.join(repo_base, image_name)
from mxnet.gluon.utils import download
download(image_url, image_name)
normalized = read_normalized_tensor_from_image_file(os.path.join("./", image_name))
return (normalized, get_workload(model_path))
def get_workload_inception_v1():
""" Import Inception V1 workload from frozen protobuf
Parameters
----------
Nothing.
Returns
-------
(image_data, tvm_data, graph_def) : Tuple
image_data is raw encoded image data for TF input.
tvm_data is the decoded image data for TVM input.
graph_def is the tensorflow workload for Inception V1.
"""
repo_base = 'https://github.com/dmlc/web-data/raw/master/tensorflow/models/InceptionV1/'
model_path = 'InceptionV1/classify_image_graph_def-with_shapes.pb'
image_name = 'elephant-299.jpg'
image_url = os.path.join(repo_base, image_name)
from mxnet.gluon.utils import download
download(image_url, image_name)
if not tf.gfile.Exists(os.path.join("./", image_name)):
tf.logging.fatal('File does not exist %s', image)
image_data = tf.gfile.FastGFile(os.path.join("./", image_name), 'rb').read()
# TVM doesn't handle decode, hence decode it.
from PIL import Image
tvm_data = Image.open(os.path.join("./", image_name)).resize((299, 299))
tvm_data = np.array(tvm_data)
return (image_data, tvm_data, get_workload(model_path))
def get_workload_mobilenet():
""" Import mobilenet workload from frozen protobuf
Parameters
----------
Nothing.
Returns
-------
graph_def: graphdef
graph_def is the tensorflow workload for mobilenet.
"""
return get_workload("MobilenetV1/mobilenet_v1_1.0_224_frozen-with-shapes.pb")
...@@ -40,13 +40,9 @@ inline bool ResizeInferShape(const nnvm::NodeAttrs& attrs, ...@@ -40,13 +40,9 @@ inline bool ResizeInferShape(const nnvm::NodeAttrs& attrs,
dshape = ConvertLayout(dshape, param.layout, kNCHW); dshape = ConvertLayout(dshape, param.layout, kNCHW);
TShape oshape = dshape; TShape oshape = dshape;
if (param.layout == "NCHW") {
oshape[2] = param.size[0]; oshape[2] = param.size[0];
oshape[3] = param.size[1]; oshape[3] = param.size[1];
} else {
oshape[1] = param.size[0];
oshape[2] = param.size[1];
}
oshape = ConvertLayout(oshape, kNCHW, param.layout); oshape = ConvertLayout(oshape, kNCHW, param.layout);
NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape); NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_shape, 0, oshape);
......
...@@ -300,11 +300,10 @@ def test_upsampling_bilinear(): ...@@ -300,11 +300,10 @@ def test_upsampling_bilinear():
def test_resize_bilinear(): def test_resize_bilinear():
x = sym.Variable("x") x = sym.Variable("x")
scale = 2 y = sym.resize(x, size=(60, 60), method="BILINEAR", name="y", layout="NHWC")
y = sym.upsampling(x, scale=scale, method="BILINEAR", name="y", layout="NHWC")
dtype = "float32" dtype = "float32"
dshape = (1, 32, 32, 4) dshape = (1, 32, 32, 4)
oshape = (1, 32*scale, 32*scale, 4) oshape = (1, 60, 60, 4)
shape_dict = {"x": dshape} shape_dict = {"x": dshape}
dtype_dict = {"x": dtype} dtype_dict = {"x": dtype}
for target, ctx in ctx_list(): for target, ctx in ctx_list():
...@@ -314,7 +313,7 @@ def test_resize_bilinear(): ...@@ -314,7 +313,7 @@ def test_resize_bilinear():
data = tvm.nd.array(a_np) data = tvm.nd.array(a_np)
m.run(x=data) m.run(x=data)
out = m.get_output(0, tvm.nd.empty(oshape, dtype)) out = m.get_output(0, tvm.nd.empty(oshape, dtype))
b_np = topi.testing.bilinear_resize_python(a_np, (32*scale, 32*scale), "NHWC") b_np = topi.testing.bilinear_resize_python(a_np, (60, 60), "NHWC")
np.testing.assert_allclose(out.asnumpy(), b_np, rtol=1e-5, atol=1e-5) np.testing.assert_allclose(out.asnumpy(), b_np, rtol=1e-5, atol=1e-5)
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -470,23 +470,64 @@ def test_forward_multi_input(): ...@@ -470,23 +470,64 @@ def test_forward_multi_input():
sess.close() sess.close()
####################################################################### #######################################################################
# Resize Bilinear
# ---------------
def _test_resize_bilinear(in_shape, to_shape, align_corners):
""" One iteration of resize bilinear """
data = np.random.uniform(size=in_shape).astype('float32')
shape_data = np.array(to_shape).astype('int32')
with tf.Graph().as_default():
in_data = constant_op.constant(data, shape=data.shape, dtype=data.dtype)
shape_data = constant_op.constant(shape_data, shape=shape_data.shape, dtype=shape_data.dtype)
# pylint: disable=unused-variable
resize_out = tf.image.resize_bilinear(in_data, shape_data, align_corners=align_corners)
# pylint: enable=unused-variable
with tf.Session() as sess:
graph_def = tf.graph_util.convert_variables_to_constants(
sess,
sess.graph.as_graph_def(add_shapes=True),
['ResizeBilinear'],
)
tf_output = run_tf_graph(sess, data,
'Const:0', 'ResizeBilinear:0')
tvm_output = run_tvm_graph(graph_def,
data,
"Const", tf_output.shape, data.dtype)
np.testing.assert_allclose(tf_output, tvm_output, atol=1e-3, rtol=1e-3)
sess.close()
def test_forward_resize_bilinear():
""" Resize Bilinear """
_test_resize_bilinear((4, 16, 32, 32), [50, 50], False)
_test_resize_bilinear((6, 32, 64, 64), [20, 20], True)
#######################################################################
# Inception V3 # Inception V3
# ------------ # ------------
def test_forward_inception_v3(): def test_forward_inception_v3():
'''test inception V3 model''' '''test inception V3 model'''
with tf.Graph().as_default(): with tf.Graph().as_default():
(data, graph_def) = nnvm.testing.tf.get_workload_inception_v3() graph_def = nnvm.testing.tf.get_workload('InceptionV3/inception_v3_2016_08_28_frozen-with_shapes.pb')
# Call the utility to import the graph definition into default graph. # Call the utility to import the graph definition into default graph.
graph_def = nnvm.testing.tf.ProcessGraphDefParam(graph_def) graph_def = nnvm.testing.tf.ProcessGraphDefParam(graph_def)
tvm_output = run_tvm_graph(graph_def, data, 'input', (1, 1001), 'float32') data = np.random.uniform(size=(1, 299, 299, 3)).astype('float32')
with tf.Session() as sess: with tf.Session() as sess:
tf_output = run_tf_graph(sess, data, 'input:0', 'InceptionV3/Predictions/Reshape_1:0') tf_output = run_tf_graph(sess, data, 'input:0', 'InceptionV3/Predictions/Reshape_1:0')
tvm_output = run_tvm_graph(graph_def, data, 'input', tf_output.shape, 'float32')
top_tvm = np.squeeze(tvm_output).argsort()[-3:][::-1] np.testing.assert_allclose(tf_output, tvm_output, rtol=1e-5, atol=1e-5)
top_tf = np.squeeze(tf_output).argsort()[-3:][::-1]
np.testing.assert_allclose(top_tf, top_tvm, rtol=1e-5, atol=1e-5)
####################################################################### #######################################################################
# Inception V1 # Inception V1
...@@ -494,16 +535,35 @@ def test_forward_inception_v3(): ...@@ -494,16 +535,35 @@ def test_forward_inception_v3():
def test_forward_inception_v1(): def test_forward_inception_v1():
'''test inception V1 model''' '''test inception V1 model'''
with tf.Graph().as_default(): with tf.Graph().as_default():
(data, tvm_data, graph_def) = nnvm.testing.tf.get_workload_inception_v1() graph_def = nnvm.testing.tf.get_workload("InceptionV1/classify_image_graph_def-with_shapes.pb")
# Call the utility to import the graph definition into default graph. # Call the utility to import the graph definition into default graph.
graph_def = nnvm.testing.tf.ProcessGraphDefParam(graph_def) graph_def = nnvm.testing.tf.ProcessGraphDefParam(graph_def)
tvm_output = run_tvm_graph(graph_def, tvm_data, 'DecodeJpeg/contents', (1, 1008), 'float32') # Build an image from random data.
from PIL import Image
from tvm.contrib import util
img_array = np.random.uniform(size=(1, 600, 600, 3)).astype("uint8")
img = Image.frombuffer('RGB', (600, 600), img_array.tostring(), 'raw', 'RGB', 0, 1)
temp = util.tempdir()
img_path = temp.relpath("tf-test.jpg")
img.save(img_path);
import os.path
if not tf.gfile.Exists(os.path.join(img_path)):
tf.logging.fatal('File does not exist %s', image)
data = tf.gfile.FastGFile(os.path.join(img_path), 'rb').read()
temp.remove()
# Extract tensorflow decoded image frame for tvm input
with tf.Session() as sess: with tf.Session() as sess:
tf_output = run_tf_graph(sess, data, 'DecodeJpeg/contents:0', 'softmax:0') tvm_data = run_tf_graph(sess, data, 'DecodeJpeg/contents:0', 'DecodeJpeg:0')
np.testing.assert_allclose(tf_output, tvm_output, rtol=2e-2, atol=2e-2) with tf.Session() as sess:
tf_output = run_tf_graph(sess, data, 'DecodeJpeg/contents:0', 'softmax:0')
tvm_output = run_tvm_graph(graph_def, tvm_data, 'DecodeJpeg/contents', tf_output.shape, 'float32')
np.testing.assert_allclose(tf_output, tvm_output, rtol=1e-5, atol=1e-5)
####################################################################### #######################################################################
# Mobilenet # Mobilenet
...@@ -511,7 +571,7 @@ def test_forward_inception_v1(): ...@@ -511,7 +571,7 @@ def test_forward_inception_v1():
def test_forward_mobilenet(): def test_forward_mobilenet():
'''test mobilenet model''' '''test mobilenet model'''
with tf.Graph().as_default(): with tf.Graph().as_default():
graph_def = nnvm.testing.tf.get_workload_mobilenet() graph_def = nnvm.testing.tf.get_workload("MobilenetV1/mobilenet_v1_1.0_224_frozen-with-shapes.pb")
# Call the utility to import the graph definition into default graph. # Call the utility to import the graph definition into default graph.
graph_def = nnvm.testing.tf.ProcessGraphDefParam(graph_def) graph_def = nnvm.testing.tf.ProcessGraphDefParam(graph_def)
...@@ -520,12 +580,7 @@ def test_forward_mobilenet(): ...@@ -520,12 +580,7 @@ def test_forward_mobilenet():
with tf.Session() as sess: with tf.Session() as sess:
tf_output = run_tf_graph(sess, data, 'input:0', out_node + ':0') tf_output = run_tf_graph(sess, data, 'input:0', out_node + ':0')
tvm_output = run_tvm_graph(graph_def, data, 'input', tf_output.shape, 'float32')
out_shape = tf_output.shape
tvm_output = run_tvm_graph(graph_def, data, 'input', out_shape, 'float32')
top_tvm = np.squeeze(tvm_output).argsort()[-10:][::-1]
top_tf = np.squeeze(tf_output).argsort()[-10:][::-1]
np.testing.assert_allclose(np.squeeze(tvm_output), np.squeeze(tf_output), rtol=1e-5, atol=1e-5) np.testing.assert_allclose(np.squeeze(tvm_output), np.squeeze(tf_output), rtol=1e-5, atol=1e-5)
####################################################################### #######################################################################
...@@ -544,3 +599,4 @@ if __name__ == '__main__': ...@@ -544,3 +599,4 @@ if __name__ == '__main__':
test_forward_inception_v1() test_forward_inception_v1()
test_forward_mobilenet() test_forward_mobilenet()
test_forward_variable() test_forward_variable()
test_forward_resize_bilinear()
...@@ -153,7 +153,7 @@ inline Tensor resize_bilinear_nhwc(const Tensor& input, ...@@ -153,7 +153,7 @@ inline Tensor resize_bilinear_nhwc(const Tensor& input,
Expr y_ratio; Expr y_ratio;
Expr x_ratio; Expr x_ratio;
if (align_corners) { if (!align_corners) {
y_ratio = make_const(Float(32), (static_cast<float>(*in_height) / y_ratio = make_const(Float(32), (static_cast<float>(*in_height) /
static_cast<float>(*out_height))); static_cast<float>(*out_height)));
x_ratio = make_const(Float(32), (static_cast<float>(*in_width) / x_ratio = make_const(Float(32), (static_cast<float>(*in_width) /
...@@ -170,21 +170,31 @@ inline Tensor resize_bilinear_nhwc(const Tensor& input, ...@@ -170,21 +170,31 @@ inline Tensor resize_bilinear_nhwc(const Tensor& input,
return compute( return compute(
out_shape, [&](const Array<Var>& indices) { out_shape, [&](const Array<Var>& indices) {
auto y0 = HalideIR::Internal::Cast::make(Int(32), tvm::floor(y_ratio * indices[1])); auto in_y = indices[1] * y_ratio;
auto x0 = HalideIR::Internal::Cast::make(Int(32), tvm::floor(x_ratio * indices[2])); auto yf = tvm::floor(in_y);
auto yc = HalideIR::Internal::Cast::make(Int(32), tvm::ceil(in_y));
auto y1 = tvm::select(((y0 + cone) > other_y), other_y, (y0 + cone)); auto y0 = HalideIR::Internal::Cast::make(Int(32), tvm::floor(in_y));
auto x1 = tvm::select(((x0 + cone) > other_x), other_x, (x0 + cone)); auto y1 = tvm::select((yc > other_y), other_y, yc);
auto y_lerp = in_y - yf;
auto h = (y_ratio * indices[1]) - y0; auto in_x = indices[2] * x_ratio;
auto w = (x_ratio * indices[2]) - x0;; auto xf = tvm::floor(in_x);
auto xc = HalideIR::Internal::Cast::make(Int(32), tvm::ceil(in_x));
auto x0 = HalideIR::Internal::Cast::make(Int(32), tvm::floor(in_x));
auto x1 = tvm::select((xc > other_x), other_x, xc);
auto x_lerp = in_x - xf;
auto A = input(indices[0], y0, x0, indices[3]); auto A = input(indices[0], y0, x0, indices[3]);
auto B = input(indices[0], y0, x1, indices[3]); auto B = input(indices[0], y0, x1, indices[3]);
auto C = input(indices[0], y1, x0, indices[3]); auto C = input(indices[0], y1, x0, indices[3]);
auto D = input(indices[0], y1, x1, indices[3]); auto D = input(indices[0], y1, x1, indices[3]);
return (A*(cone-w)*(cone-h) + B*(w)*(cone-h) + C*(h)*(cone-w) + D*w*h); auto top = A + (B - A) * x_lerp;
auto bottom = C + (D - C) * x_lerp;
return (top + (bottom - top) * y_lerp);
}, name, tag); }, name, tag);
} }
...@@ -220,7 +230,7 @@ inline Tensor resize_bilinear_nchw(const Tensor& input, ...@@ -220,7 +230,7 @@ inline Tensor resize_bilinear_nchw(const Tensor& input,
Expr y_ratio; Expr y_ratio;
Expr x_ratio; Expr x_ratio;
if (align_corners) { if (!align_corners) {
y_ratio = make_const(Float(32), (static_cast<float>(*in_height) / y_ratio = make_const(Float(32), (static_cast<float>(*in_height) /
static_cast<float>(*out_height))); static_cast<float>(*out_height)));
x_ratio = make_const(Float(32), (static_cast<float>(*in_width) / x_ratio = make_const(Float(32), (static_cast<float>(*in_width) /
...@@ -237,21 +247,31 @@ inline Tensor resize_bilinear_nchw(const Tensor& input, ...@@ -237,21 +247,31 @@ inline Tensor resize_bilinear_nchw(const Tensor& input,
return compute( return compute(
out_shape, [&](const Array<Var>& indices) { out_shape, [&](const Array<Var>& indices) {
auto y0 = HalideIR::Internal::Cast::make(Int(32), tvm::floor(y_ratio * indices[2])); auto in_y = indices[2] * y_ratio;
auto x0 = HalideIR::Internal::Cast::make(Int(32), tvm::floor(x_ratio * indices[3])); auto yf = tvm::floor(in_y);
auto yc = HalideIR::Internal::Cast::make(Int(32), tvm::ceil(in_y));
auto y1 = tvm::select(((y0 + cone) > other_y), other_y, (y0 + cone)); auto y0 = HalideIR::Internal::Cast::make(Int(32), tvm::floor(in_y));
auto x1 = tvm::select(((x0 + cone) > other_x), other_x, (x0 + cone)); auto y1 = tvm::select((yc > other_y), other_y, yc);
auto y_lerp = in_y - yf;
auto h = (y_ratio * indices[2]) - y0; auto in_x = indices[3] * x_ratio;
auto w = (x_ratio * indices[3]) - x0;; auto xf = tvm::floor(in_x);
auto xc = HalideIR::Internal::Cast::make(Int(32), tvm::ceil(in_x));
auto x0 = HalideIR::Internal::Cast::make(Int(32), tvm::floor(in_x));
auto x1 = tvm::select((xc > other_x), other_x, xc);
auto x_lerp = in_x - xf;
auto A = input(indices[0], indices[1], y0, x0); auto A = input(indices[0], indices[1], y0, x0);
auto B = input(indices[0], indices[1], y0, x1); auto B = input(indices[0], indices[1], y0, x1);
auto C = input(indices[0], indices[1], y1, x0); auto C = input(indices[0], indices[1], y1, x0);
auto D = input(indices[0], indices[1], y1, x1); auto D = input(indices[0], indices[1], y1, x1);
return ((A*(cone-w)*(cone-h)) + (B*(w)*(cone-h)) + (C*(h)*(cone-w)) + (D*w*h)); auto top = A + (B - A) * x_lerp;
auto bottom = C + (D - C) * x_lerp;
return (top + (bottom - top) * y_lerp);
}, name, tag); }, name, tag);
} }
......
...@@ -3,32 +3,6 @@ ...@@ -3,32 +3,6 @@
import math import math
import numpy as np import numpy as np
def bilinear_weights(height, width, new_h, new_w, align_corners=False):
""" Helper function to generate weights for bilinear scaling """
if align_corners:
x_ratio = np.float32(np.float32(width)/np.float32(new_w))
y_ratio = np.float32(np.float32(height)/np.float32(new_h))
else:
x_ratio = np.float32(np.float32(width-1)/np.float32(new_w-1))
y_ratio = np.float32(np.float32(height-1)/np.float32(new_h-1))
def _bilinear_interpolation(y, x):
x_coord = math.floor(x_ratio * x)
y_coord = math.floor(y_ratio * y)
x_diff = np.float32((x_ratio * x) - x_coord)
y_diff = np.float32((y_ratio * y) - y_coord)
return [y_coord, x_coord, y_diff, x_diff]
# weights to hold (srcx, srcy, x_diff, y_diff) for each out value.
weights = np.empty([new_h, new_w, 4], dtype='float32')
for i in range(new_h):
for j in range(new_w):
weights[i][j] = _bilinear_interpolation(i, j)
return weights
def bilinear_resize_python(image, out_size, layout, align_corners=False): def bilinear_resize_python(image, out_size, layout, align_corners=False):
""" Bilinear scaling using python""" """ Bilinear scaling using python"""
(new_h, new_w) = out_size (new_h, new_w) = out_size
...@@ -40,20 +14,32 @@ def bilinear_resize_python(image, out_size, layout, align_corners=False): ...@@ -40,20 +14,32 @@ def bilinear_resize_python(image, out_size, layout, align_corners=False):
(batch, channel, h, w) = image.shape (batch, channel, h, w) = image.shape
scaled_image = np.ones((batch, channel, new_h, new_w)) scaled_image = np.ones((batch, channel, new_h, new_w))
weights = bilinear_weights(h, w, new_h, new_w, align_corners) if align_corners:
height_scale = np.float32(h-1) / np.float32(out_size[0]-1)
width_scale = np.float32(w-1) / np.float32(out_size[1]-1)
else:
height_scale = np.float32(h) / np.float32(out_size[0])
width_scale = np.float32(w) / np.float32(out_size[1])
for b in range(batch): for b in range(batch):
for i in range(channel): for i in range(channel):
for j in range(new_h): for j in range(new_h):
for k in range(new_w): for k in range(new_w):
y0 = int(weights[j][k][0]) in_y = j * height_scale
x0 = int(weights[j][k][1]) y0 = math.floor(in_y)
y1 = min(math.ceil(in_y), h - 1)
y_lerp = in_y - y0
y0 = int(y0)
y1 = int(y1)
x1 = min((x0+1), (w-1)) in_x = k * width_scale
y1 = min((y0+1), (h-1)) x0 = math.floor(in_x)
x1 = min(math.ceil(in_x), w - 1)
x_lerp = in_x - x0
y_diff = weights[j][k][2] x0 = int(x0)
x_diff = weights[j][k][3] x1 = int(x1)
if layout == 'NHWC': if layout == 'NHWC':
A = image[b][y0][x0][i] A = image[b][y0][x0][i]
...@@ -66,10 +52,10 @@ def bilinear_resize_python(image, out_size, layout, align_corners=False): ...@@ -66,10 +52,10 @@ def bilinear_resize_python(image, out_size, layout, align_corners=False):
C = image[b][i][y1][x0] C = image[b][i][y1][x0]
D = image[b][i][y1][x1] D = image[b][i][y1][x1]
pixel = np.float32((A*(1-x_diff)*(1-y_diff) + top = A + (B - A) * x_lerp
B*(x_diff)*(1-y_diff) + bottom = C + (D - C) * x_lerp
C*(y_diff)*(1-x_diff) +
D*(x_diff*y_diff))) pixel = np.float32(top + (bottom - top) * y_lerp)
if layout == 'NHWC': if layout == 'NHWC':
scaled_image[b][j][k][i] = pixel scaled_image[b][j][k][i] = pixel
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment