Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
4bd92a4a
Commit
4bd92a4a
authored
Jan 18, 2018
by
Yuwei Hu
Committed by
Tianqi Chen
May 29, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Keras] fix convert_pooling with same pad (#322)
parent
53361fae
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
25 additions
and
36 deletions
+25
-36
nnvm/python/nnvm/frontend/keras.py
+25
-36
No files found.
nnvm/python/nnvm/frontend/keras.py
View file @
4bd92a4a
...
@@ -16,6 +16,14 @@ def _check_data_format(keras_layer):
...
@@ -16,6 +16,14 @@ def _check_data_format(keras_layer):
raise
ValueError
(
"Keras frontend currently supports data_format = channels_last only."
)
raise
ValueError
(
"Keras frontend currently supports data_format = channels_last only."
)
def
_get_pad_pair
(
input1d
,
kernel1d
,
stride1d
):
out1d
=
(
input1d
+
stride1d
-
1
)
//
stride1d
pad
=
np
.
maximum
((
out1d
-
1
)
*
stride1d
+
kernel1d
-
input1d
,
0
)
pad_before
=
pad
//
2
pad_after
=
pad
-
pad_before
return
[
pad_before
,
pad_after
]
def
_convert_activation
(
insym
,
keras_layer
,
_
):
def
_convert_activation
(
insym
,
keras_layer
,
_
):
if
isinstance
(
keras_layer
,
str
):
if
isinstance
(
keras_layer
,
str
):
act_type
=
keras_layer
act_type
=
keras_layer
...
@@ -120,6 +128,8 @@ def _convert_convolution(insym, keras_layer, symtab):
...
@@ -120,6 +128,8 @@ def _convert_convolution(insym, keras_layer, symtab):
dilation
=
[
keras_layer
.
dilation_rate
[
0
],
keras_layer
.
dilation_rate
[
1
]]
dilation
=
[
keras_layer
.
dilation_rate
[
0
],
keras_layer
.
dilation_rate
[
1
]]
else
:
else
:
dilation
=
[
keras_layer
.
dilation_rate
,
keras_layer
.
dilation_rate
]
dilation
=
[
keras_layer
.
dilation_rate
,
keras_layer
.
dilation_rate
]
kernel_h
=
(
kernel_h
-
1
)
*
dilation
[
0
]
+
1
kernel_w
=
(
kernel_w
-
1
)
*
dilation
[
1
]
+
1
stride_h
,
stride_w
=
keras_layer
.
strides
stride_h
,
stride_w
=
keras_layer
.
strides
params
=
{
'weight'
:
symtab
.
new_const
(
weight
),
params
=
{
'weight'
:
symtab
.
new_const
(
weight
),
'kernel_size'
:
[
kernel_h
,
kernel_w
],
'kernel_size'
:
[
kernel_h
,
kernel_w
],
...
@@ -141,14 +151,8 @@ def _convert_convolution(insym, keras_layer, symtab):
...
@@ -141,14 +151,8 @@ def _convert_convolution(insym, keras_layer, symtab):
elif
keras_layer
.
padding
==
'same'
:
elif
keras_layer
.
padding
==
'same'
:
in_h
=
keras_layer
.
input
.
shape
[
1
]
.
value
in_h
=
keras_layer
.
input
.
shape
[
1
]
.
value
in_w
=
keras_layer
.
input
.
shape
[
2
]
.
value
in_w
=
keras_layer
.
input
.
shape
[
2
]
.
value
out_h
=
(
in_h
+
stride_h
-
1
)
//
stride_h
pad_t
,
pad_b
=
_get_pad_pair
(
in_h
,
kernel_h
,
stride_h
)
out_w
=
(
in_w
+
stride_w
-
1
)
//
stride_w
pad_l
,
pad_r
=
_get_pad_pair
(
in_w
,
kernel_w
,
stride_w
)
pad_h
=
np
.
maximum
((
out_h
-
1
)
*
stride_h
+
kernel_h
-
in_h
,
0
)
pad_w
=
np
.
maximum
((
out_w
-
1
)
*
stride_w
+
kernel_w
-
in_w
,
0
)
pad_t
=
pad_h
//
2
pad_l
=
pad_w
//
2
pad_b
=
pad_h
-
pad_t
pad_r
=
pad_w
-
pad_l
insym
=
_sym
.
pad
(
data
=
insym
,
pad_width
=
((
0
,
0
),
(
0
,
0
),
(
pad_t
,
pad_b
),
(
pad_l
,
pad_r
)))
insym
=
_sym
.
pad
(
data
=
insym
,
pad_width
=
((
0
,
0
),
(
0
,
0
),
(
pad_t
,
pad_b
),
(
pad_l
,
pad_r
)))
else
:
else
:
raise
TypeError
(
"Unsupported padding type : {}"
.
format
(
keras_layer
.
padding
))
raise
TypeError
(
"Unsupported padding type : {}"
.
format
(
keras_layer
.
padding
))
...
@@ -187,14 +191,8 @@ def _convert_separable_convolution(insym, keras_layer, symtab):
...
@@ -187,14 +191,8 @@ def _convert_separable_convolution(insym, keras_layer, symtab):
elif
keras_layer
.
padding
==
'same'
:
elif
keras_layer
.
padding
==
'same'
:
in_h
=
keras_layer
.
input
.
shape
[
1
]
.
value
in_h
=
keras_layer
.
input
.
shape
[
1
]
.
value
in_w
=
keras_layer
.
input
.
shape
[
2
]
.
value
in_w
=
keras_layer
.
input
.
shape
[
2
]
.
value
out_h
=
(
in_h
+
stride_h
-
1
)
//
stride_h
pad_t
,
pad_b
=
_get_pad_pair
(
in_h
,
kernel_h
,
stride_h
)
out_w
=
(
in_w
+
stride_w
-
1
)
//
stride_w
pad_l
,
pad_r
=
_get_pad_pair
(
in_w
,
kernel_w
,
stride_w
)
pad_h
=
np
.
maximum
((
out_h
-
1
)
*
stride_h
+
kernel_h
-
in_h
,
0
)
pad_w
=
np
.
maximum
((
out_w
-
1
)
*
stride_w
+
kernel_w
-
in_w
,
0
)
pad_t
=
pad_h
//
2
pad_l
=
pad_w
//
2
pad_b
=
pad_h
-
pad_t
pad_r
=
pad_w
-
pad_l
insym
=
_sym
.
pad
(
data
=
insym
,
pad_width
=
(
insym
=
_sym
.
pad
(
data
=
insym
,
pad_width
=
(
(
0
,
0
),
(
0
,
0
),
(
pad_t
,
pad_b
),
(
pad_l
,
pad_r
)))
(
0
,
0
),
(
0
,
0
),
(
pad_t
,
pad_b
),
(
pad_l
,
pad_r
)))
else
:
else
:
...
@@ -242,23 +240,18 @@ def _convert_pooling(insym, keras_layer, symtab):
...
@@ -242,23 +240,18 @@ def _convert_pooling(insym, keras_layer, symtab):
pool_h
,
pool_w
=
keras_layer
.
pool_size
pool_h
,
pool_w
=
keras_layer
.
pool_size
stride_h
,
stride_w
=
keras_layer
.
strides
stride_h
,
stride_w
=
keras_layer
.
strides
params
=
{
'pool_size'
:
[
pool_h
,
pool_w
],
params
=
{
'pool_size'
:
[
pool_h
,
pool_w
],
'strides'
:
[
stride_h
,
stride_w
]}
'strides'
:
[
stride_h
,
stride_w
],
'padding'
:
[
0
,
0
]}
if
keras_layer
.
padding
==
'valid'
:
if
keras_layer
.
padding
==
'valid'
:
params
[
'padding'
]
=
[
0
,
0
]
pass
# we insert a separate pad operator
elif
keras_layer
.
padding
==
'same'
:
elif
keras_layer
.
padding
==
'same'
:
in_h
=
keras_layer
.
input
.
shape
[
1
]
.
value
in_h
=
keras_layer
.
input
.
shape
[
1
]
.
value
in_w
=
keras_layer
.
input
.
shape
[
2
]
.
value
in_w
=
keras_layer
.
input
.
shape
[
2
]
.
value
out_h
=
(
in_h
+
stride_h
-
1
)
//
stride_h
pad_t
,
pad_b
=
_get_pad_pair
(
in_h
,
pool_h
,
stride_h
)
out_w
=
(
in_w
+
stride_w
-
1
)
//
stride_w
pad_l
,
pad_r
=
_get_pad_pair
(
in_w
,
pool_w
,
stride_w
)
pad_h
=
np
.
maximum
((
out_h
-
1
)
*
stride_h
+
pool_h
-
in_h
,
0
)
insym
=
_sym
.
pad
(
data
=
insym
,
pad_width
=
(
pad_w
=
np
.
maximum
((
out_w
-
1
)
*
stride_w
+
pool_w
-
in_w
,
0
)
(
0
,
0
),
(
0
,
0
),
(
pad_t
,
pad_b
),
(
pad_l
,
pad_r
)))
pad_t
=
pad_h
//
2
pad_l
=
pad_w
//
2
pad_b
=
pad_h
-
pad_t
pad_r
=
pad_w
-
pad_l
params
[
'padding'
]
=
[
pad_t
,
pad_l
]
if
pad_b
>
pad_t
and
pad_r
>
pad_l
:
params
[
'ceil_mode'
]
=
True
else
:
else
:
raise
TypeError
(
"Unsupported padding type : {}"
.
format
(
keras_layer
.
padding
))
raise
TypeError
(
"Unsupported padding type : {}"
.
format
(
keras_layer
.
padding
))
if
pool_type
==
'MaxPooling2D'
:
if
pool_type
==
'MaxPooling2D'
:
...
@@ -349,13 +342,11 @@ def _convert_concat(insym, keras_layer, _):
...
@@ -349,13 +342,11 @@ def _convert_concat(insym, keras_layer, _):
def
_convert_reshape
(
insym
,
keras_layer
,
_
):
def
_convert_reshape
(
insym
,
keras_layer
,
_
):
shape
=
keras_layer
.
shape
if
hasattr
(
keras_layer
,
'shape'
)
else
\
shape
=
keras_layer
.
shape
if
hasattr
(
keras_layer
,
'shape'
)
\
keras_layer
.
target_shape
if
hasattr
(
keras_layer
,
'target_shape'
)
else
\
else
keras_layer
.
target_shape
if
hasattr
(
keras_layer
,
'target_shape'
)
\
None
else
None
if
shape
is
None
:
if
shape
is
None
:
raise
TypeError
(
"No shape attribute in reshape layer: {}"
.
format
(
keras_layer
))
raise
TypeError
(
"No shape attribute in reshape layer: {}"
.
format
(
keras_layer
))
return
_sym
.
reshape
(
insym
,
shape
=
shape
)
return
_sym
.
reshape
(
insym
,
shape
=
shape
)
...
@@ -487,11 +478,9 @@ def from_keras(model):
...
@@ -487,11 +478,9 @@ def from_keras(model):
inbound_nodes
=
keras_layer
.
inbound_nodes
if
hasattr
(
keras_layer
,
'inbound_nodes'
)
\
inbound_nodes
=
keras_layer
.
inbound_nodes
if
hasattr
(
keras_layer
,
'inbound_nodes'
)
\
else
keras_layer
.
_inbound_nodes
if
hasattr
(
keras_layer
,
'_inbound_nodes'
)
\
else
keras_layer
.
_inbound_nodes
if
hasattr
(
keras_layer
,
'_inbound_nodes'
)
\
else
None
else
None
if
inbound_nodes
is
None
:
if
inbound_nodes
is
None
:
raise
TypeError
(
"Unknown layer type or unsupported Keras version : {}"
raise
TypeError
(
"Unknown layer type or unsupported Keras version : {}"
.
format
(
keras_layer
))
.
format
(
keras_layer
))
for
node
in
inbound_nodes
:
for
node
in
inbound_nodes
:
for
pred
in
node
.
inbound_layers
:
for
pred
in
node
.
inbound_layers
:
predecessors
.
append
(
pred
.
name
)
predecessors
.
append
(
pred
.
name
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment