Commit 47e57be4 by Zhi Committed by Tianqi Chen

support of multiple devices for tvm.build (#1773)

parent bea0b00f
...@@ -124,9 +124,6 @@ def test_simplex_data_transferring(): ...@@ -124,9 +124,6 @@ def test_simplex_data_transferring():
schedule_add = topi.cpp.cuda.schedule_injective(target, [elemwise_add]) schedule_add = topi.cpp.cuda.schedule_injective(target, [elemwise_add])
lower_add = tvm.lower(schedule_add, [tensor_a, tensor_b, elemwise_add], lower_add = tvm.lower(schedule_add, [tensor_a, tensor_b, elemwise_add],
name="elemwise_add") name="elemwise_add")
host_funcs_add, lib_add = tvm.build(lower_add, target=target_device,
name="elemwise_add",
postpone_host_codegen=True)
# Insert copy. Neither compute nor schedule is required for the copy # Insert copy. Neither compute nor schedule is required for the copy
# node. The compute will be performed at runtime which is just data # node. The compute will be performed at runtime which is just data
...@@ -142,16 +139,8 @@ def test_simplex_data_transferring(): ...@@ -142,16 +139,8 @@ def test_simplex_data_transferring():
elemwise_sub], elemwise_sub],
name="elemwise_sub") name="elemwise_sub")
host_funcs_sub, lib_sub = tvm.build(lower_sub, target=target_host, target_flist = {target_device: [lower_add], target_host: [lower_sub]}
name="elemwise_sub", mhost = tvm.build(target_flist, target_host=target_host)
postpone_host_codegen=True)
host_funcs = host_funcs_add + host_funcs_sub
mhost = tvm.codegen.build_module(host_funcs, target_host)
if lib_add:
mhost.import_module(lib_add)
if lib_sub:
mhost.import_module(lib_sub)
ctx = [host_ctx, device_ctx] ctx = [host_ctx, device_ctx]
mod = graph_runtime.create(graph, mhost, ctx) mod = graph_runtime.create(graph, mhost, ctx)
params = {} params = {}
...@@ -338,10 +327,6 @@ def test_duplex_data_transferring(): ...@@ -338,10 +327,6 @@ def test_duplex_data_transferring():
lower_add1 = tvm.lower( lower_add1 = tvm.lower(
add_schedule1, [tensor_d, copy_sub_add, elemwise_add1], add_schedule1, [tensor_d, copy_sub_add, elemwise_add1],
name="elemwise_add1") name="elemwise_add1")
host_funcs_add, lib_add = tvm.build([lower_add0, lower_add1],
target=target_device,
postpone_host_codegen=True)
# Create module for sub whose target is the host. # Create module for sub whose target is the host.
tensor_c = tvm.placeholder(shape, name="C") tensor_c = tvm.placeholder(shape, name="C")
elemwise_sub = tvm.compute(shape, lambda *i: copy_add_sub(*i) elemwise_sub = tvm.compute(shape, lambda *i: copy_add_sub(*i)
...@@ -350,15 +335,10 @@ def test_duplex_data_transferring(): ...@@ -350,15 +335,10 @@ def test_duplex_data_transferring():
lower_sub = tvm.lower(sub_schedule, [copy_add_sub, tensor_c, lower_sub = tvm.lower(sub_schedule, [copy_add_sub, tensor_c,
elemwise_sub], elemwise_sub],
name="elemwise_sub") name="elemwise_sub")
host_funcs_sub, lib_sub = tvm.build(lower_sub, target=target_host,
postpone_host_codegen=True)
host_funcs = host_funcs_add + host_funcs_sub
mhost = tvm.codegen.build_module(host_funcs, target_host)
if lib_add:
mhost.import_module(lib_add)
if lib_sub:
mhost.import_module(lib_sub)
target_flist = {target_device: [lower_add0, lower_add1], target_host:
[lower_sub]}
mhost = tvm.build(target_flist, target_host=target_host)
ctx = [host_ctx, device_ctx] ctx = [host_ctx, device_ctx]
params = {} params = {}
params["A"] = tensor_a = np.random.uniform( params["A"] = tensor_a = np.random.uniform(
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment