Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
42b189cb
Commit
42b189cb
authored
Jun 18, 2018
by
Lianmin Zheng
Committed by
Tianqi Chen
Jun 17, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[NNVM][TESTING] Add two testing symbols: dqn and dcgan (#1294)
parent
21ece752
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
276 additions
and
1 deletions
+276
-1
nnvm/python/nnvm/testing/__init__.py
+2
-0
nnvm/python/nnvm/testing/dcgan.py
+90
-0
nnvm/python/nnvm/testing/dqn.py
+71
-0
nnvm/tests/python/frontend/mxnet/model_zoo/__init__.py
+9
-1
nnvm/tests/python/frontend/mxnet/model_zoo/dcgan.py
+63
-0
nnvm/tests/python/frontend/mxnet/model_zoo/dqn.py
+27
-0
nnvm/tests/python/frontend/mxnet/test_graph.py
+14
-0
No files found.
nnvm/python/nnvm/testing/__init__.py
View file @
42b189cb
...
...
@@ -7,4 +7,6 @@ from . import mobilenet
from
.
import
mlp
from
.
import
resnet
from
.
import
vgg
from
.
import
dcgan
from
.
import
dqn
from
.
import
yolo2_detection
nnvm/python/nnvm/testing/dcgan.py
0 → 100644
View file @
42b189cb
# pylint: disable=unused-argument
"""
Symbol of the generator of DCGAN
Adopted from:
https://github.com/tqchen/mxnet-gan/blob/master/mxgan/generator.py
Reference:
Radford, Alec, Luke Metz, and Soumith Chintala.
"Unsupervised representation learning with deep convolutional generative adversarial networks."
arXiv preprint arXiv:1511.06434 (2015).
"""
from
..
import
symbol
as
sym
from
.
utils
import
create_workload
def
deconv2d
(
data
,
ishape
,
oshape
,
kshape
,
name
,
stride
=
(
2
,
2
)):
"""a deconv layer that enlarges the feature map"""
target_shape
=
(
oshape
[
-
2
],
oshape
[
-
1
])
pad_y
=
(
kshape
[
0
]
-
1
)
//
2
pad_x
=
(
kshape
[
1
]
-
1
)
//
2
adj_y
=
(
target_shape
[
0
]
+
2
*
pad_y
-
kshape
[
0
])
%
stride
[
0
]
adj_x
=
(
target_shape
[
1
]
+
2
*
pad_x
-
kshape
[
1
])
%
stride
[
1
]
net
=
sym
.
conv2d_transpose
(
data
,
kernel_size
=
kshape
,
strides
=
stride
,
channels
=
oshape
[
0
],
padding
=
(
pad_y
,
pad_x
),
output_padding
=
(
adj_y
,
adj_x
),
use_bias
=
False
,
name
=
name
)
return
net
def
deconv2d_bn_relu
(
data
,
prefix
,
**
kwargs
):
"""a block of deconv + batch norm + relu"""
eps
=
1e-5
+
1e-12
net
=
deconv2d
(
data
,
name
=
"
%
s_deconv"
%
prefix
,
**
kwargs
)
net
=
sym
.
batch_norm
(
net
,
epsilon
=
eps
,
name
=
"
%
s_bn"
%
prefix
)
net
=
sym
.
relu
(
net
,
name
=
"
%
s_act"
%
prefix
)
return
net
def
get_symbol
(
oshape
,
ngf
=
128
,
code
=
None
):
"""get symbol of dcgan generator"""
assert
oshape
[
-
1
]
==
32
,
"Only support 32x32 image"
assert
oshape
[
-
2
]
==
32
,
"Only support 32x32 image"
code
=
sym
.
Variable
(
"data"
)
if
code
is
None
else
code
net
=
sym
.
dense
(
code
,
name
=
"g1"
,
units
=
4
*
4
*
ngf
*
4
,
use_bias
=
False
)
net
=
sym
.
relu
(
net
)
# 4 x 4
net
=
sym
.
reshape
(
net
,
shape
=
(
-
1
,
ngf
*
4
,
4
,
4
))
# 8 x 8
net
=
deconv2d_bn_relu
(
net
,
ishape
=
(
ngf
*
4
,
4
,
4
),
oshape
=
(
ngf
*
2
,
8
,
8
),
kshape
=
(
4
,
4
),
prefix
=
"g2"
)
# 16x16
net
=
deconv2d_bn_relu
(
net
,
ishape
=
(
ngf
*
2
,
8
,
8
),
oshape
=
(
ngf
,
16
,
16
),
kshape
=
(
4
,
4
),
prefix
=
"g3"
)
# 32x32
net
=
deconv2d
(
net
,
ishape
=
(
ngf
,
16
,
16
),
oshape
=
oshape
[
-
3
:],
kshape
=
(
4
,
4
),
name
=
"g4_deconv"
)
net
=
sym
.
tanh
(
net
)
return
net
def
get_workload
(
batch_size
,
oshape
=
(
3
,
32
,
32
),
ngf
=
128
,
random_len
=
100
,
dtype
=
"float32"
):
"""Get benchmark workload for a DCGAN generator
Parameters
----------
batch_size : int
The batch size used in the model
oshape : tuple, optional
The shape of output image, layout="CHW"
ngf: int, optional
The number of final feature maps in the generator
random_len : int, optional
The length of random input
dtype : str, optional
The data type
Returns
-------
net : nnvm.symbol
The computational graph
params : dict of str to NDArray
The parameters.
"""
net
=
get_symbol
(
oshape
=
oshape
,
ngf
=
ngf
)
return
create_workload
(
net
,
batch_size
,
(
random_len
,
),
dtype
)
nnvm/python/nnvm/testing/dqn.py
0 → 100644
View file @
42b189cb
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Symbol of Nature DQN
Reference:
Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning."
Nature 518.7540 (2015): 529.
"""
from
..
import
symbol
as
sym
from
.
utils
import
create_workload
def
get_symbol
(
num_actions
=
18
):
"""get symbol of nature dqn"""
data
=
sym
.
Variable
(
name
=
'data'
)
net
=
sym
.
conv2d
(
data
,
kernel_size
=
(
8
,
8
),
strides
=
(
4
,
4
),
padding
=
(
0
,
0
),
channels
=
32
,
name
=
'conv1'
)
net
=
sym
.
relu
(
net
,
name
=
'relu1'
)
net
=
sym
.
conv2d
(
net
,
kernel_size
=
(
4
,
4
),
strides
=
(
2
,
2
),
padding
=
(
0
,
0
),
channels
=
64
,
name
=
'conv2'
)
net
=
sym
.
relu
(
net
,
name
=
'relu2'
)
net
=
sym
.
conv2d
(
net
,
kernel_size
=
(
3
,
3
),
strides
=
(
1
,
1
),
padding
=
(
0
,
0
),
channels
=
64
,
name
=
'conv3'
)
net
=
sym
.
relu
(
net
,
name
=
'relu3'
)
net
=
sym
.
flatten
(
net
,
name
=
'flatten'
)
net
=
sym
.
dense
(
net
,
units
=
512
,
name
=
'fc4'
)
net
=
sym
.
relu
(
net
,
name
=
'relu4'
)
net
=
sym
.
dense
(
net
,
units
=
num_actions
,
name
=
'fc5'
)
return
net
def
get_workload
(
batch_size
,
num_actions
=
18
,
image_shape
=
(
4
,
84
,
84
),
dtype
=
"float32"
):
"""Get benchmark workload for a Deep Q Network
Parameters
----------
batch_size : int
The batch size used in the model
num_actions : int, optional
Number of actions
image_shape : tuple, optional
The input image shape
dtype : str, optional
The data type
Returns
-------
net : nnvm.symbol
The computational graph
params : dict of str to NDArray
The parameters.
"""
net
=
get_symbol
(
num_actions
=
num_actions
)
return
create_workload
(
net
,
batch_size
,
image_shape
,
dtype
)
nnvm/tests/python/frontend/mxnet/model_zoo/__init__.py
View file @
42b189cb
"""MXNet and NNVM model zoo."""
from
__future__
import
absolute_import
from
.
import
mlp
,
resnet
,
vgg
from
.
import
mlp
,
resnet
,
vgg
,
dqn
,
dcgan
import
nnvm.testing
__all__
=
[
'mx_mlp'
,
'nnvm_mlp'
,
'mx_resnet'
,
'nnvm_resnet'
,
'mx_vgg'
,
'nnvm_vgg'
]
...
...
@@ -26,3 +26,11 @@ for num_layer in [11, 13, 16, 19]:
mx_vgg
[
num_layer
]
=
vgg
.
get_symbol
(
_num_class
,
num_layer
)
nnvm_vgg
[
num_layer
]
=
nnvm
.
testing
.
vgg
.
get_workload
(
1
,
_num_class
,
num_layers
=
num_layer
)[
0
]
# dqn
mx_dqn
=
dqn
.
get_symbol
()
nnvm_dqn
=
nnvm
.
testing
.
dqn
.
get_workload
(
1
)[
0
]
# dcgan generator
mx_dcgan
=
dcgan
.
get_symbol
()
nnvm_dcgan
=
nnvm
.
testing
.
dcgan
.
get_workload
(
1
)[
0
]
nnvm/tests/python/frontend/mxnet/model_zoo/dcgan.py
0 → 100644
View file @
42b189cb
# pylint: disable=unused-argument
"""
The MXNet symbol of DCGAN generator
Adopted from:
https://github.com/tqchen/mxnet-gan/blob/master/mxgan/generator.py
Reference:
Radford, Alec, Luke Metz, and Soumith Chintala.
"Unsupervised representation learning with deep convolutional generative adversarial networks."
arXiv preprint arXiv:1511.06434 (2015).
"""
import
mxnet
as
mx
def
deconv2d
(
data
,
ishape
,
oshape
,
kshape
,
name
,
stride
=
(
2
,
2
)):
"""a deconv layer that enlarges the feature map"""
target_shape
=
(
oshape
[
-
2
],
oshape
[
-
1
])
pad_y
=
(
kshape
[
0
]
-
1
)
//
2
pad_x
=
(
kshape
[
1
]
-
1
)
//
2
adj_y
=
(
target_shape
[
0
]
+
2
*
pad_y
-
kshape
[
0
])
%
stride
[
0
]
adj_x
=
(
target_shape
[
1
]
+
2
*
pad_x
-
kshape
[
1
])
%
stride
[
1
]
net
=
mx
.
sym
.
Deconvolution
(
data
,
kernel
=
kshape
,
stride
=
stride
,
pad
=
(
pad_y
,
pad_x
),
adj
=
(
adj_y
,
adj_x
),
num_filter
=
oshape
[
0
],
no_bias
=
True
,
name
=
name
)
return
net
def
deconv2d_bn_relu
(
data
,
prefix
,
**
kwargs
):
"""a block of deconv + batch norm + relu"""
eps
=
1e-5
+
1e-12
net
=
deconv2d
(
data
,
name
=
"
%
s_deconv"
%
prefix
,
**
kwargs
)
net
=
mx
.
sym
.
BatchNorm
(
net
,
eps
=
eps
,
name
=
"
%
s_bn"
%
prefix
)
net
=
mx
.
sym
.
Activation
(
net
,
name
=
"
%
s_act"
%
prefix
,
act_type
=
'relu'
)
return
net
def
get_symbol
(
oshape
=
(
3
,
32
,
32
),
ngf
=
128
,
code
=
None
):
"""get symbol of dcgan generator"""
assert
oshape
[
-
1
]
==
32
,
"Only support 32x32 image"
assert
oshape
[
-
2
]
==
32
,
"Only support 32x32 image"
code
=
mx
.
sym
.
Variable
(
"data"
)
if
code
is
None
else
code
net
=
mx
.
sym
.
FullyConnected
(
code
,
name
=
"g1"
,
num_hidden
=
4
*
4
*
ngf
*
4
,
no_bias
=
True
,
flatten
=
False
)
net
=
mx
.
sym
.
Activation
(
net
,
act_type
=
'relu'
)
# 4 x 4
net
=
mx
.
sym
.
reshape
(
net
,
shape
=
(
-
1
,
ngf
*
4
,
4
,
4
))
# 8 x 8
net
=
deconv2d_bn_relu
(
net
,
ishape
=
(
ngf
*
4
,
4
,
4
),
oshape
=
(
ngf
*
2
,
8
,
8
),
kshape
=
(
4
,
4
),
prefix
=
"g2"
)
# 16x16
net
=
deconv2d_bn_relu
(
net
,
ishape
=
(
ngf
*
2
,
8
,
8
),
oshape
=
(
ngf
,
16
,
16
),
kshape
=
(
4
,
4
),
prefix
=
"g3"
)
# 32x32
net
=
deconv2d
(
net
,
ishape
=
(
ngf
,
16
,
16
),
oshape
=
oshape
[
-
3
:],
kshape
=
(
4
,
4
),
name
=
"g4_deconv"
)
net
=
mx
.
sym
.
Activation
(
net
,
act_type
=
'tanh'
)
return
net
nnvm/tests/python/frontend/mxnet/model_zoo/dqn.py
0 → 100644
View file @
42b189cb
"""
The mxnet symbol of Nature DQN
Reference:
Mnih, Volodymyr, et al.
"Human-level control through deep reinforcement learning."
Nature 518.7540 (2015): 529.
"""
import
mxnet
as
mx
def
get_symbol
(
num_action
=
18
):
data
=
mx
.
sym
.
Variable
(
name
=
'data'
)
net
=
mx
.
sym
.
Convolution
(
data
,
kernel
=
(
8
,
8
),
stride
=
(
4
,
4
),
num_filter
=
32
,
name
=
'conv1'
)
net
=
mx
.
sym
.
Activation
(
net
,
act_type
=
'relu'
,
name
=
'relu1'
)
net
=
mx
.
sym
.
Convolution
(
net
,
kernel
=
(
4
,
4
),
stride
=
(
2
,
2
),
num_filter
=
64
,
name
=
'conv2'
)
net
=
mx
.
sym
.
Activation
(
net
,
act_type
=
'relu'
,
name
=
'relu2'
)
net
=
mx
.
sym
.
Convolution
(
net
,
kernel
=
(
3
,
3
),
stride
=
(
1
,
1
),
num_filter
=
64
,
name
=
'conv3'
)
net
=
mx
.
sym
.
Activation
(
net
,
act_type
=
'relu'
,
name
=
'relu3'
)
net
=
mx
.
sym
.
FullyConnected
(
net
,
num_hidden
=
512
,
name
=
'fc4'
)
net
=
mx
.
sym
.
Activation
(
net
,
act_type
=
'relu'
,
name
=
'relu4'
)
net
=
mx
.
sym
.
FullyConnected
(
net
,
num_hidden
=
num_action
,
name
=
'fc5'
,
flatten
=
False
)
return
net
nnvm/tests/python/frontend/mxnet/test_graph.py
View file @
42b189cb
...
...
@@ -32,6 +32,18 @@ def test_resnet():
nnvm_sym
=
model_zoo
.
nnvm_resnet
[
n
]
compare_graph
(
from_mx_sym
,
nnvm_sym
)
def
test_dqn
():
mx_sym
=
model_zoo
.
mx_dqn
from_mx_sym
,
_
=
nnvm
.
frontend
.
from_mxnet
(
mx_sym
)
nnvm_sym
=
model_zoo
.
nnvm_dqn
compare_graph
(
from_mx_sym
,
nnvm_sym
)
def
test_dcgan
():
mx_sym
=
model_zoo
.
mx_dcgan
from_mx_sym
,
_
=
nnvm
.
frontend
.
from_mxnet
(
mx_sym
)
nnvm_sym
=
model_zoo
.
nnvm_dcgan
compare_graph
(
from_mx_sym
,
nnvm_sym
)
def
test_multi_outputs
():
def
compose
(
F
,
**
kwargs
):
x
=
F
.
sym
.
Variable
(
'x'
)
...
...
@@ -48,3 +60,5 @@ if __name__ == '__main__':
test_vgg
()
test_resnet
()
test_multi_outputs
()
test_dqn
()
test_dcgan
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment