Commit 3f835bd9 by Gemfield Committed by Siva

Enhance upsample operator to adapt onnx opset version 9 for nnvm comp… (#2968)

* Enhance upsample operator to adapt onnx opset version 9 for nnvm compiler

* Add upsample test case for newer opset in nnvm

* re-trigger the CI
parent dd63c755
...@@ -404,8 +404,14 @@ class Upsample(OnnxOpConverter): ...@@ -404,8 +404,14 @@ class Upsample(OnnxOpConverter):
""" """
@classmethod @classmethod
def _impl_v7(cls, inputs, attr, params): def _impl_v9(cls, inputs, attr, params):
scales = attr.get('scales') scales = attr.get('scales')
if not scales:
#Here we are going to higher OPSET version.
assert len(inputs) == 2, "Upsample op take 2 inputs, {} given".format(len(inputs))
input_name = inputs[1].list_input_names()[0]
scales = params[input_name].asnumpy()
inputs = inputs[:1]
assert len(scales) == 4 and scales[0] == 1.0 and scales[1] == 1.0 and scales[2] == scales[3] assert len(scales) == 4 and scales[0] == 1.0 and scales[1] == 1.0 and scales[2] == scales[3]
mode = attr.get('mode') mode = attr.get('mode')
if mode == b'nearest': if mode == b'nearest':
......
...@@ -438,9 +438,41 @@ def _test_upsample_bilinear(): ...@@ -438,9 +438,41 @@ def _test_upsample_bilinear():
tvm_out = get_tvm_output(model, in_array, target, ctx, out_shape, 'float32') tvm_out = get_tvm_output(model, in_array, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5) tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5)
def _test_upsample_bilinear_opset9():
scale = 2
in_shape = (1, 1, 3, 3)
out_shape = (1, 1, 3*scale, 3*scale)
y = helper.make_node("Upsample", ['in','scales'], ['out'], mode='linear')
scales=[1.0, 1.0, 2.0, 2.0]
in_array = np.random.uniform(size=in_shape).astype(np.float32)
out_array = topi.testing.bilinear_resize_python(in_array, (3*scale, 3*scale), "NCHW")
ref_array = np.array(scales)
ref_node = helper.make_node('Constant',
inputs=[],
outputs=['scales'],
value=onnx.helper.make_tensor(name = 'const_tensor',
data_type = TensorProto.FLOAT,
dims = ref_array.shape,
vals = ref_array.flatten().astype(float)))
graph = helper.make_graph([ref_node, y],
'upsample_bilinear_opset9_test',
inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))],
outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='upsample_bilinear_opset9_test')
inputs = []
inputs.append(in_array)
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, inputs, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5)
def test_upsample(): def test_upsample():
_test_upsample_nearest() _test_upsample_nearest()
_test_upsample_bilinear() _test_upsample_bilinear()
_test_upsample_bilinear_opset9()
def _test_softmax(inshape, axis): def _test_softmax(inshape, axis):
opname = 'Softmax' opname = 'Softmax'
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment