Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
3edf5260
Commit
3edf5260
authored
Sep 16, 2019
by
Animesh Jain
Committed by
Yizhi Liu
Sep 17, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TOPI] Setting up AutoTVM template for Intel Int8 conv2D (#3955)
parent
c846d17c
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
115 additions
and
29 deletions
+115
-29
python/tvm/autotvm/task/topi_integration.py
+3
-0
topi/python/topi/nn/conv2d.py
+0
-1
topi/python/topi/x86/conv2d.py
+21
-15
topi/python/topi/x86/conv2d_int8.py
+91
-13
No files found.
python/tvm/autotvm/task/topi_integration.py
View file @
3edf5260
...
@@ -85,6 +85,7 @@ class TaskExtractEnv:
...
@@ -85,6 +85,7 @@ class TaskExtractEnv:
topi
.
nn
.
group_conv2d_nchw
:
"topi_nn_group_conv2d_nchw"
,
topi
.
nn
.
group_conv2d_nchw
:
"topi_nn_group_conv2d_nchw"
,
topi
.
nn
.
conv2d_transpose_nchw
:
"topi_nn_conv2d_transpose_nchw"
,
topi
.
nn
.
conv2d_transpose_nchw
:
"topi_nn_conv2d_transpose_nchw"
,
topi
.
nn
.
conv2d_NCHWc
:
"topi_x86_conv2d_NCHWc"
,
topi
.
nn
.
conv2d_NCHWc
:
"topi_x86_conv2d_NCHWc"
,
topi
.
nn
.
conv2d_NCHWc_int8
:
"topi_x86_conv2d_NCHWc_int8"
,
topi
.
nn
.
dense
:
"topi_nn_dense"
,
topi
.
nn
.
dense
:
"topi_nn_dense"
,
topi
.
nn
.
bitserial_conv2d_nchw
:
"topi_nn_bitserial_conv2d_nchw"
,
topi
.
nn
.
bitserial_conv2d_nchw
:
"topi_nn_bitserial_conv2d_nchw"
,
topi
.
nn
.
bitserial_conv2d_nhwc
:
"topi_nn_bitserial_conv2d_nhwc"
,
topi
.
nn
.
bitserial_conv2d_nhwc
:
"topi_nn_bitserial_conv2d_nhwc"
,
...
@@ -100,6 +101,7 @@ class TaskExtractEnv:
...
@@ -100,6 +101,7 @@ class TaskExtractEnv:
topi
.
nn
.
group_conv2d_nchw
:
[
topi
.
generic
.
schedule_group_conv2d_nchw
],
topi
.
nn
.
group_conv2d_nchw
:
[
topi
.
generic
.
schedule_group_conv2d_nchw
],
topi
.
nn
.
conv2d_transpose_nchw
:
[
topi
.
generic
.
schedule_conv2d_transpose_nchw
],
topi
.
nn
.
conv2d_transpose_nchw
:
[
topi
.
generic
.
schedule_conv2d_transpose_nchw
],
topi
.
nn
.
conv2d_NCHWc
:
[
topi
.
generic
.
schedule_conv2d_NCHWc
],
topi
.
nn
.
conv2d_NCHWc
:
[
topi
.
generic
.
schedule_conv2d_NCHWc
],
topi
.
nn
.
conv2d_NCHWc_int8
:
[
topi
.
generic
.
schedule_conv2d_NCHWc_int8
],
topi
.
nn
.
dense
:
[
topi
.
generic
.
schedule_dense
],
topi
.
nn
.
dense
:
[
topi
.
generic
.
schedule_dense
],
topi
.
nn
.
bitserial_conv2d_nchw
:
[
topi
.
generic
.
schedule_bitserial_conv2d_nchw
],
topi
.
nn
.
bitserial_conv2d_nchw
:
[
topi
.
generic
.
schedule_bitserial_conv2d_nchw
],
topi
.
nn
.
bitserial_conv2d_nhwc
:
[
topi
.
generic
.
schedule_bitserial_conv2d_nhwc
],
topi
.
nn
.
bitserial_conv2d_nhwc
:
[
topi
.
generic
.
schedule_bitserial_conv2d_nhwc
],
...
@@ -111,6 +113,7 @@ class TaskExtractEnv:
...
@@ -111,6 +113,7 @@ class TaskExtractEnv:
self
.
func_to_reflection
=
{
self
.
func_to_reflection
=
{
topi
.
nn
.
conv2d
:
lambda
x
:
setattr
(
topi
.
nn
,
'conv2d'
,
x
),
topi
.
nn
.
conv2d
:
lambda
x
:
setattr
(
topi
.
nn
,
'conv2d'
,
x
),
topi
.
nn
.
conv2d_NCHWc
:
lambda
x
:
setattr
(
topi
.
nn
,
'conv2d_NCHWc'
,
x
),
topi
.
nn
.
conv2d_NCHWc
:
lambda
x
:
setattr
(
topi
.
nn
,
'conv2d_NCHWc'
,
x
),
topi
.
nn
.
conv2d_NCHWc_int8
:
lambda
x
:
setattr
(
topi
.
nn
,
'conv2d_NCHWc_int8'
,
x
),
topi
.
nn
.
depthwise_conv2d_nchw
:
lambda
x
:
setattr
(
topi
.
nn
,
'depthwise_conv2d_nchw'
,
x
),
topi
.
nn
.
depthwise_conv2d_nchw
:
lambda
x
:
setattr
(
topi
.
nn
,
'depthwise_conv2d_nchw'
,
x
),
topi
.
nn
.
group_conv2d_nchw
:
lambda
x
:
setattr
(
topi
.
nn
,
'group_conv2d_nchw'
,
x
),
topi
.
nn
.
group_conv2d_nchw
:
lambda
x
:
setattr
(
topi
.
nn
,
'group_conv2d_nchw'
,
x
),
topi
.
nn
.
conv2d_transpose_nchw
:
lambda
x
:
setattr
(
topi
.
nn
,
'conv2d_transpose_nchw'
,
x
),
topi
.
nn
.
conv2d_transpose_nchw
:
lambda
x
:
setattr
(
topi
.
nn
,
'conv2d_transpose_nchw'
,
x
),
...
...
topi/python/topi/nn/conv2d.py
View file @
3edf5260
...
@@ -669,7 +669,6 @@ def conv2d_NCHWc_int8_compute(data, kernel, strides, padding, dilation, layout,
...
@@ -669,7 +669,6 @@ def conv2d_NCHWc_int8_compute(data, kernel, strides, padding, dilation, layout,
name
=
'conv2d_NCHWc_int8'
,
tag
=
"conv2d_NCHWc_int8"
)
name
=
'conv2d_NCHWc_int8'
,
tag
=
"conv2d_NCHWc_int8"
)
def
conv2d_winograd_weight_transform
(
kernel
,
tile_size
):
def
conv2d_winograd_weight_transform
(
kernel
,
tile_size
):
"""Weight transformation for winograd
"""Weight transformation for winograd
...
...
topi/python/topi/x86/conv2d.py
View file @
3edf5260
...
@@ -27,7 +27,7 @@ from tvm.autotvm.task import get_config
...
@@ -27,7 +27,7 @@ from tvm.autotvm.task import get_config
from
..
import
generic
,
tag
from
..
import
generic
,
tag
from
..
import
nn
from
..
import
nn
from
..util
import
get_const_tuple
,
get_shape
from
..util
import
get_const_tuple
,
get_shape
from
..nn.conv2d
import
conv2d
,
conv2d_NCHWc
,
\
from
..nn.conv2d
import
conv2d
,
conv2d_NCHWc
,
conv2d_NCHWc_int8
,
\
conv2d_alter_layout
,
conv2d_infer_layout
,
_get_workload
as
_get_conv2d_workload
conv2d_alter_layout
,
conv2d_infer_layout
,
_get_workload
as
_get_conv2d_workload
from
..nn.depthwise_conv2d
import
_get_workload
as
_get_depthwise_conv2d_workload
from
..nn.depthwise_conv2d
import
_get_workload
as
_get_depthwise_conv2d_workload
from
..nn.depthwise_conv2d
import
depthwise_conv2d_NCHWc
,
depthwise_conv2d_nchw
from
..nn.depthwise_conv2d
import
depthwise_conv2d_NCHWc
,
depthwise_conv2d_nchw
...
@@ -77,7 +77,6 @@ def _get_default_config(cfg, data, kernel, strides, padding, out_dtype, is_depth
...
@@ -77,7 +77,6 @@ def _get_default_config(cfg, data, kernel, strides, padding, out_dtype, is_depth
else
:
else
:
conv2d_avx_common
.
_fallback_schedule
(
cfg
,
wkl
)
conv2d_avx_common
.
_fallback_schedule
(
cfg
,
wkl
)
def
_create_tuning_space
(
cfg
,
data
,
kernel
,
strides
,
padding
,
dilation
,
layout
):
def
_create_tuning_space
(
cfg
,
data
,
kernel
,
strides
,
padding
,
dilation
,
layout
):
"""Create schedule configuration from input arguments"""
"""Create schedule configuration from input arguments"""
dshape
=
get_const_tuple
(
data
.
shape
)
dshape
=
get_const_tuple
(
data
.
shape
)
...
@@ -92,11 +91,6 @@ def _create_tuning_space(cfg, data, kernel, strides, padding, dilation, layout):
...
@@ -92,11 +91,6 @@ def _create_tuning_space(cfg, data, kernel, strides, padding, dilation, layout):
elif
pat
.
match
(
layout
)
is
not
None
:
elif
pat
.
match
(
layout
)
is
not
None
:
n
,
ic_chunk
,
h
,
w
,
ic_bn
=
dshape
n
,
ic_chunk
,
h
,
w
,
ic_bn
=
dshape
target
=
tvm
.
target
.
current_target
(
allow_none
=
False
)
target
=
tvm
.
target
.
current_target
(
allow_none
=
False
)
if
_is_int8_hw_support
(
data
.
dtype
,
kernel
.
dtype
,
target
):
oc_chunk
,
k_ic
,
kh
,
kw
,
k_ic_f
,
oc_bn
,
k_ic_s
=
kshape
ic
=
ic_chunk
*
ic_bn
assert
ic
==
k_ic
*
k_ic_f
*
k_ic_s
else
:
oc_chunk
,
k_ic_chunk
,
kh
,
kw
,
k_ic_bn
,
oc_bn
=
kshape
oc_chunk
,
k_ic_chunk
,
kh
,
kw
,
k_ic_bn
,
oc_bn
=
kshape
assert
ic_chunk
==
k_ic_chunk
assert
ic_chunk
==
k_ic_chunk
assert
ic_bn
==
k_ic_bn
assert
ic_bn
==
k_ic_bn
...
@@ -105,6 +99,7 @@ def _create_tuning_space(cfg, data, kernel, strides, padding, dilation, layout):
...
@@ -105,6 +99,7 @@ def _create_tuning_space(cfg, data, kernel, strides, padding, dilation, layout):
else
:
else
:
raise
ValueError
(
"Not support this layout {} with "
raise
ValueError
(
"Not support this layout {} with "
"schedule template."
.
format
(
layout
))
"schedule template."
.
format
(
layout
))
is_kernel_1x1
=
kh
==
1
and
kw
==
1
is_kernel_1x1
=
kh
==
1
and
kw
==
1
ph
,
pw
=
padding
if
isinstance
(
padding
,
(
tuple
,
list
))
else
(
padding
,
padding
)
ph
,
pw
=
padding
if
isinstance
(
padding
,
(
tuple
,
list
))
else
(
padding
,
padding
)
sh
,
sw
=
strides
if
isinstance
(
strides
,
(
tuple
,
list
))
else
(
strides
,
strides
)
sh
,
sw
=
strides
if
isinstance
(
strides
,
(
tuple
,
list
))
else
(
strides
,
strides
)
...
@@ -444,14 +439,25 @@ def _alter_conv2d_layout(attrs, inputs, tinfo, F):
...
@@ -444,14 +439,25 @@ def _alter_conv2d_layout(attrs, inputs, tinfo, F):
in_channel
//
ic_bn
,
ic_bn
//
n_elems
,
n_elems
))
in_channel
//
ic_bn
,
ic_bn
//
n_elems
,
n_elems
))
kernel_OIHWioe
=
F
.
transpose
(
kernel_OHWoIie
,
axes
=
(
0
,
4
,
1
,
2
,
5
,
3
,
6
))
kernel_OIHWioe
=
F
.
transpose
(
kernel_OHWoIie
,
axes
=
(
0
,
4
,
1
,
2
,
5
,
3
,
6
))
copy_inputs
=
[
data_expr
,
kernel_OIHWioe
]
copy_inputs
=
[
data_expr
,
kernel_OIHWioe
]
# Store altered operator's config
new_kernel
=
tvm
.
placeholder
((
out_channel
//
oc_bn
,
kh
,
kw
,
oc_bn
,
# Store altered operator's config. New kernel layout OIHWio4
in_channel
//
ic_bn
,
ic_bn
//
n_elems
,
new_kernel
=
tvm
.
placeholder
((
out_channel
//
oc_bn
,
n_elems
))
in_channel
//
ic_bn
,
new_workload
=
autotvm
.
task
.
args_to_workload
(
kh
,
[
new_data
,
new_kernel
,
strides
,
padding
,
dilation
,
kw
,
new_attrs
[
layout_name
],
new_attrs
[
'out_layout'
],
out_dtype
],
ic_bn
//
n_elems
,
conv2d_NCHWc
)
oc_bn
,
n_elems
),
dtype
=
kernel
.
dtype
)
new_workload
=
autotvm
.
task
.
args_to_workload
([
new_data
,
new_kernel
,
strides
,
padding
,
dilation
,
new_attrs
[
layout_name
],
new_attrs
[
'out_layout'
],
out_dtype
],
conv2d_NCHWc_int8
)
dispatch_ctx
.
update
(
target
,
new_workload
,
cfg
)
dispatch_ctx
.
update
(
target
,
new_workload
,
cfg
)
if
F
.
__name__
==
'nnvm.symbol'
:
if
F
.
__name__
==
'nnvm.symbol'
:
logging
.
warning
(
"Use native layout for int8 convolution on NNVM."
)
logging
.
warning
(
"Use native layout for int8 convolution on NNVM."
)
...
...
topi/python/topi/x86/conv2d_int8.py
View file @
3edf5260
...
@@ -17,30 +17,108 @@
...
@@ -17,30 +17,108 @@
# pylint: disable=invalid-name,unused-variable,unused-argument,no-member
# pylint: disable=invalid-name,unused-variable,unused-argument,no-member
"""Conv2D int8 schedule on x86"""
"""Conv2D int8 schedule on x86"""
import
re
import
tvm
import
tvm
from
tvm
import
autotvm
from
tvm
import
autotvm
from
tvm.autotvm.task
import
get_config
from
tvm.autotvm.task.topi_integration
import
deserialize_args
from
..
import
generic
,
tag
from
..
import
generic
,
tag
from
..util
import
get_const_tuple
from
..util
import
get_const_tuple
from
..nn.conv2d
import
conv2d_NCHWc_int8
from
..nn.conv2d
import
conv2d_NCHWc_int8
from
..
import
nn
from
..
import
nn
from
.conv2d
import
_get_default_config
from
.
import
conv2d_avx_1x1
,
conv2d_avx_common
from
.
import
conv2d_avx_1x1
,
conv2d_avx_common
def
_create_tuning_space_int8
(
cfg
,
data
,
kernel
,
strides
,
padding
,
dilation
,
layout
):
"""Create schedule configuration from input arguments"""
dshape
=
get_const_tuple
(
data
.
shape
)
kshape
=
get_const_tuple
(
kernel
.
shape
)
pat
=
re
.
compile
(
r'NCHW.+(\d+)c'
)
if
layout
==
'NCHW'
:
n
,
ic
,
h
,
w
=
dshape
oc
,
_
,
kh
,
kw
=
kshape
elif
layout
==
'NHWC'
:
n
,
h
,
w
,
ic
=
dshape
kh
,
kw
,
oc
,
_
=
kshape
elif
pat
.
match
(
layout
)
is
not
None
:
n
,
ic_chunk
,
h
,
w
,
ic_bn
=
dshape
target
=
tvm
.
target
.
current_target
(
allow_none
=
False
)
oc_chunk
,
k_ic
,
kh
,
kw
,
k_ic_f
,
oc_bn
,
k_ic_s
=
kshape
ic
=
ic_chunk
*
ic_bn
assert
ic
==
k_ic
*
k_ic_f
*
k_ic_s
oc
=
oc_chunk
*
oc_bn
else
:
raise
ValueError
(
"Not support this layout {} with "
"schedule template."
.
format
(
layout
))
is_kernel_1x1
=
kh
==
1
and
kw
==
1
ph
,
pw
=
padding
if
isinstance
(
padding
,
(
tuple
,
list
))
else
(
padding
,
padding
)
sh
,
sw
=
strides
if
isinstance
(
strides
,
(
tuple
,
list
))
else
(
strides
,
strides
)
oh
=
(
h
-
kh
+
2
*
ph
)
//
sh
+
1
ow
=
(
w
-
kw
+
2
*
pw
)
//
sw
+
1
# Create schedule config
cfg
.
define_split
(
'tile_ic'
,
ic
,
num_outputs
=
2
,
filter
=
lambda
y
:
y
.
size
[
-
1
]
%
4
==
0
)
cfg
.
define_split
(
'tile_oc'
,
oc
,
num_outputs
=
2
,
filter
=
lambda
y
:
y
.
size
[
-
1
]
%
16
==
0
)
cfg
.
define_split
(
"tile_ow"
,
ow
,
num_outputs
=
2
,
filter
=
lambda
y
:
y
.
size
[
-
1
]
<=
64
)
if
is_kernel_1x1
:
cfg
.
define_knob
(
"tile_oh"
,
[
1
,
2
]
if
oh
>
1
else
[
1
])
else
:
cfg
.
define_knob
(
"unroll_kw"
,
[
True
,
False
])
# Define template function for autotvm task
# We define schedule template in this function instead of
# declaration function since actual input arguments need
# to be altered by the schedule selected.
@autotvm.task.register
(
"topi_x86_conv2d_NCHWc_int8"
)
def
_topi_nn_conv2d_NCHWc_int8
(
*
args
,
**
kwargs
):
assert
not
kwargs
,
"Do not support kwargs in template function call"
args
=
deserialize_args
(
args
)
if
len
(
args
)
==
7
:
data
,
kernel
,
strides
,
padding
,
dilation
,
origin_layout
,
dtype
=
args
else
:
assert
len
(
args
)
==
8
data
,
kernel
,
strides
,
padding
,
dilation
,
origin_layout
,
out_layout
,
dtype
=
args
raw_data_shape
=
get_const_tuple
(
data
.
shape
)
raw_kernel_shape
=
get_const_tuple
(
kernel
.
shape
)
# get config here
cfg
=
get_config
()
_create_tuning_space_int8
(
cfg
,
data
,
kernel
,
strides
,
padding
,
dilation
,
origin_layout
)
# change shape with the value in config
ic_bn
,
oc_bn
,
ow_bn
=
(
cfg
[
"tile_ic"
]
.
size
[
-
1
],
cfg
[
"tile_oc"
]
.
size
[
-
1
],
cfg
[
"tile_ow"
]
.
size
[
-
1
])
data_layout
=
"NCHW
%
dc"
%
ic_bn
out_layout
=
"NCHW
%
dc"
%
oc_bn
# Set up the new shape for data and kernel
new_data_shape
=
(
raw_data_shape
[
0
],
raw_data_shape
[
1
]
//
ic_bn
,
raw_data_shape
[
2
],
raw_data_shape
[
3
],
ic_bn
)
n_elems
=
4
new_kernel_shape
=
(
raw_kernel_shape
[
0
]
//
oc_bn
,
raw_kernel_shape
[
1
]
//
ic_bn
,
raw_kernel_shape
[
2
],
raw_kernel_shape
[
3
],
ic_bn
//
n_elems
,
oc_bn
,
n_elems
)
new_data
=
tvm
.
placeholder
(
new_data_shape
,
data
.
dtype
)
new_kernel
=
tvm
.
placeholder
(
new_kernel_shape
,
kernel
.
dtype
)
C
=
_declaration_conv_NCHWc_int8
(
cfg
,
new_data
,
new_kernel
,
strides
,
padding
,
dilation
,
data_layout
,
out_layout
,
dtype
)
s
=
_schedule_conv2d_NCHWc_int8
(
cfg
,
[
C
])
return
s
,
[
new_data
,
new_kernel
,
C
]
@autotvm.register_topi_compute
(
conv2d_NCHWc_int8
,
'cpu'
,
'direct'
)
@autotvm.register_topi_compute
(
conv2d_NCHWc_int8
,
'cpu'
,
'direct'
)
def
_declaration_conv_NCHWc_int8
(
cfg
,
data
,
kernel
,
strides
,
def
_declaration_conv_NCHWc_int8
(
cfg
,
data
,
kernel
,
strides
,
padding
,
dilation
,
layout
,
out_layout
,
out_dtype
):
padding
,
dilation
,
layout
,
out_layout
,
out_dtype
):
n
,
ic_chunk
,
ih
,
iw
,
ic_bn
=
get_const_tuple
(
data
.
shape
)
in_channel
=
ic_chunk
*
ic_bn
oc_chunk
,
_
,
kernel_height
,
kernel_width
,
_
,
oc_bn
,
_
=
\
get_const_tuple
(
kernel
.
shape
)
num_filter
=
oc_chunk
*
oc_bn
# If config is not set, we can reuse the default config for NCHW.
if
cfg
.
is_fallback
:
_get_default_config
(
cfg
,
tvm
.
placeholder
((
n
,
in_channel
,
ih
,
iw
),
dtype
=
data
.
dtype
),
tvm
.
placeholder
((
num_filter
,
in_channel
,
kernel_height
,
kernel_width
),
dtype
=
kernel
.
dtype
),
strides
,
padding
,
out_dtype
)
return
nn
.
conv2d_NCHWc_int8_compute
(
data
,
return
nn
.
conv2d_NCHWc_int8_compute
(
data
,
kernel
,
kernel
,
strides
,
strides
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment