Unverified Commit 3df8d560 by Josh Fromm Committed by GitHub

[Topi] Tensorcore support for Conv3D (#5284)

* one weird trick.

* Added schedule knob for different workloads.

* Initial conv3d tensorcore working.

* Added conv3d tensorcore strategy.

* Added layout conversion to tensorcore friendly format for conv2d and conv3d.

* Add target name check.

* Fixed bad names and depthwise check.

* Removed duplicated attribute assignment.
parent 0d48361a
...@@ -27,6 +27,7 @@ from .. import op as reg ...@@ -27,6 +27,7 @@ from .. import op as reg
from .. import strategy from .. import strategy
from ..op import OpPattern from ..op import OpPattern
from .._tensor import elemwise_shape_func from .._tensor import elemwise_shape_func
from ..strategy.generic import is_depthwise_conv2d
# relu # relu
reg.register_broadcast_schedule("nn.relu") reg.register_broadcast_schedule("nn.relu")
...@@ -139,13 +140,21 @@ def convert_conv2d(attrs, inputs, tinfos, desired_layout): ...@@ -139,13 +140,21 @@ def convert_conv2d(attrs, inputs, tinfos, desired_layout):
# pylint: disable=import-outside-toplevel # pylint: disable=import-outside-toplevel
from tvm import relay from tvm import relay
data, weight = inputs data, weight = inputs
assert desired_layout == 'NCHW', \
"Currently only transformation to NCHW layout is supported."
if desired_layout == 'NCHW':
new_attrs = dict(attrs) new_attrs = dict(attrs)
new_attrs['data_layout'] = desired_layout new_attrs['data_layout'] = desired_layout
if desired_layout == 'NCHW':
new_attrs['kernel_layout'] = 'OIHW' new_attrs['kernel_layout'] = 'OIHW'
return relay.nn.conv2d(data, weight, **new_attrs) return relay.nn.conv2d(data, weight, **new_attrs)
elif desired_layout == 'NHWC':
# Check for depthwise convolution.
if is_depthwise_conv2d(data.shape, attrs['data_layout'], weight.shape,
attrs['kernel_layout'], attrs['groups']):
new_attrs['kernel_layout'] = 'HWOI'
else:
new_attrs['kernel_layout'] = 'HWIO'
return relay.nn.conv2d(data, weight, **new_attrs)
else:
assert "Layout %s is not yet supported." % (desired_layout)
return None return None
...@@ -183,6 +192,41 @@ def alter_op_layout_conv3d(attrs, inputs, tinfos, out_type): ...@@ -183,6 +192,41 @@ def alter_op_layout_conv3d(attrs, inputs, tinfos, out_type):
"""Alternate the layout of conv3d""" """Alternate the layout of conv3d"""
return topi.nn.conv3d_alter_layout(attrs, inputs, tinfos, out_type) return topi.nn.conv3d_alter_layout(attrs, inputs, tinfos, out_type)
@reg.register_convert_op_layout("nn.conv3d")
def convert_conv3d(attrs, inputs, tinfos, desired_layout):
"""Convert Layout pass registration for conv3d op.
Parameters
----------
attrs : tvm.ir.Attrs
Attributes of current convolution
inputs : list of tvm.relay.Expr
The args of the Relay expr to be legalized
tinfos : list of types
List of input and output types
desired_layout : str
The desired layout
Returns
-------
result : tvm.relay.Expr
The transformed expr
"""
# pylint: disable=import-outside-toplevel
from tvm import relay
data, weight = inputs
new_attrs = dict(attrs)
new_attrs['data_layout'] = desired_layout
if desired_layout == 'NCDHW':
new_attrs['kernel_layout'] = 'OIDHW'
return relay.nn.conv3d(data, weight, **new_attrs)
elif desired_layout == "NDHWC":
new_attrs['kernel_layout'] = 'DHWIO'
return relay.nn.conv3d(data, weight, **new_attrs)
else:
assert "Layout %s is not yet supported" % desired_layout
return None
# conv3d_winograd related operators # conv3d_winograd related operators
reg.register_strategy("nn.contrib_conv3d_winograd_without_weight_transform", reg.register_strategy("nn.contrib_conv3d_winograd_without_weight_transform",
strategy.conv3d_winograd_without_weight_transfrom_strategy) strategy.conv3d_winograd_without_weight_transfrom_strategy)
......
...@@ -138,6 +138,7 @@ def conv2d_strategy_cuda(attrs, inputs, out_type, target): ...@@ -138,6 +138,7 @@ def conv2d_strategy_cuda(attrs, inputs, out_type, target):
name="conv2d_nhwc.cuda") name="conv2d_nhwc.cuda")
N, _, _, _ = get_const_tuple(data.shape) N, _, _, _ = get_const_tuple(data.shape)
_, _, CI, CO = get_const_tuple(kernel.shape) _, _, CI, CO = get_const_tuple(kernel.shape)
if target.target_name == "cuda":
if nvcc.have_tensorcore(tvm.gpu(0).compute_version): if nvcc.have_tensorcore(tvm.gpu(0).compute_version):
if (N % 16 == 0 and CI % 16 == 0 and CO % 16 == 0) or \ if (N % 16 == 0 and CI % 16 == 0 and CO % 16 == 0) or \
(N % 8 == 0 and CI % 16 == 0 and CO % 32 == 0) or \ (N % 8 == 0 and CI % 16 == 0 and CO % 32 == 0) or \
...@@ -170,7 +171,7 @@ def conv2d_strategy_cuda(attrs, inputs, out_type, target): ...@@ -170,7 +171,7 @@ def conv2d_strategy_cuda(attrs, inputs, out_type, target):
strategy.add_implementation( strategy.add_implementation(
wrap_compute_conv2d(topi.cuda.depthwise_conv2d_nchw), wrap_compute_conv2d(topi.cuda.depthwise_conv2d_nchw),
wrap_topi_schedule(topi.cuda.schedule_depthwise_conv2d_nchw), wrap_topi_schedule(topi.cuda.schedule_depthwise_conv2d_nchw),
name="dpethwise_nchw.cuda") name="depthwise_conv2d_nchw.cuda")
elif layout == "NHWC": elif layout == "NHWC":
assert kernel_layout == "HWOI" assert kernel_layout == "HWOI"
strategy.add_implementation( strategy.add_implementation(
...@@ -249,7 +250,7 @@ def conv2d_transpose_strategy_cuda(attrs, inputs, out_type, target): ...@@ -249,7 +250,7 @@ def conv2d_transpose_strategy_cuda(attrs, inputs, out_type, target):
def conv3d_strategy_cuda(attrs, inputs, out_type, target): def conv3d_strategy_cuda(attrs, inputs, out_type, target):
"""conv3d cuda strategy""" """conv3d cuda strategy"""
strategy = _op.OpStrategy() strategy = _op.OpStrategy()
_, kernel = inputs data, kernel = inputs
layout = attrs.data_layout layout = attrs.data_layout
_, stride_h, stride_w = attrs.get_int_tuple("strides") _, stride_h, stride_w = attrs.get_int_tuple("strides")
_, dilation_h, dilation_w = attrs.get_int_tuple("dilation") _, dilation_h, dilation_w = attrs.get_int_tuple("dilation")
...@@ -269,10 +270,24 @@ def conv3d_strategy_cuda(attrs, inputs, out_type, target): ...@@ -269,10 +270,24 @@ def conv3d_strategy_cuda(attrs, inputs, out_type, target):
name="conv3d_ncdhw_winograd.cuda", name="conv3d_ncdhw_winograd.cuda",
plevel=5) plevel=5)
else: # layout == "NDHWC": else: # layout == "NDHWC":
strategy.add_implementation(wrap_compute_conv3d(topi.cuda.conv3d_ndhwc), strategy.add_implementation(
wrap_compute_conv3d(topi.cuda.conv3d_ndhwc),
wrap_topi_schedule(topi.cuda.schedule_conv3d_ndhwc), wrap_topi_schedule(topi.cuda.schedule_conv3d_ndhwc),
name="conv3d_ndhwc.cuda", name="conv3d_ndhwc.cuda",
plevel=10) plevel=10)
N, _, _, _, _ = get_const_tuple(data.shape)
_, _, _, CI, CO = get_const_tuple(kernel.shape)
if target.target_name == "cuda":
if nvcc.have_tensorcore(tvm.gpu(0).compute_version):
if (N % 16 == 0 and CI % 16 == 0 and CO % 16 == 0) or \
(N % 8 == 0 and CI % 16 == 0 and CO % 32 == 0) or \
(N % 32 == 0 and CI % 16 == 0 and CO % 8 == 0):
strategy.add_implementation(
wrap_compute_conv3d(topi.cuda.conv3d_ndhwc_tensorcore),
wrap_topi_schedule(topi.cuda.schedule_conv3d_ndhwc_tensorcore),
name="conv3d_ndhwc_tensorcore.cuda",
plevel=20)
if target.target_name == "cuda" and "cudnn" in target.libs: if target.target_name == "cuda" and "cudnn" in target.libs:
strategy.add_implementation(wrap_compute_conv3d(topi.cuda.conv3d_cudnn, True), strategy.add_implementation(wrap_compute_conv3d(topi.cuda.conv3d_cudnn, True),
wrap_topi_schedule(topi.cuda.schedule_conv3d_cudnn), wrap_topi_schedule(topi.cuda.schedule_conv3d_cudnn),
......
...@@ -46,4 +46,5 @@ from .nms import get_valid_counts, non_max_suppression ...@@ -46,4 +46,5 @@ from .nms import get_valid_counts, non_max_suppression
from .rcnn import * from .rcnn import *
from .sort import * from .sort import *
from .conv2d_nhwc_tensorcore import * from .conv2d_nhwc_tensorcore import *
from .conv3d_ndhwc_tensorcore import *
from .dense_tensorcore import * from .dense_tensorcore import *
...@@ -70,7 +70,7 @@ def nhwc_tensorcore_cuda(cfg, Input, Filter, stride, padding, dilation, out_dtyp ...@@ -70,7 +70,7 @@ def nhwc_tensorcore_cuda(cfg, Input, Filter, stride, padding, dilation, out_dtyp
# convert data type of input feature maps and weights # convert data type of input feature maps and weights
TransPaddedInput = te.compute( TransPaddedInput = te.compute(
PaddedInput.shape, PaddedInput.shape,
lambda h, w, i, o: PaddedInput[h, w, i, o].astype('float16')) lambda n, h, w, c: PaddedInput[n, h, w, c].astype('float16'))
TransFilter = te.compute( TransFilter = te.compute(
Filter.shape, lambda h, w, i, o: Filter[h, w, i, o].astype('float16')) Filter.shape, lambda h, w, i, o: Filter[h, w, i, o].astype('float16'))
Output = te.compute( Output = te.compute(
......
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, too-many-locals, too-many-function-args
# pylint: disable=too-many-statements, unused-argument, too-many-arguments
"""Tensorcore template for cuda backend"""
import numpy as np
import tvm
from tvm import te
from tvm import autotvm
from ..util import get_const_tuple, traverse_inline, simplify
from ..nn.pad import pad
from ..nn.util import get_pad_tuple3d
from .tensor_intrin import intrin_wmma_load_matrix_A
from .tensor_intrin import intrin_wmma_load_matrix_W
from .tensor_intrin import intrin_wmma_store_matrix
from .tensor_intrin import intrin_wmma_gemm
def ndhwc_tensorcore_cuda(cfg, Input, Filter, stride, padding, dilation, out_dtype):
"""Compute declaration for conv3d tensorcore function"""
assert isinstance(stride, int) or len(stride) == 3
assert isinstance(dilation, int) or len(dilation) == 3
if isinstance(stride, int):
stride_d = stride_h = stride_w = stride
else:
stride_d, stride_h, stride_w = stride
if isinstance(dilation, int):
dilation_d = dilation_h = dilation_w = dilation
else:
dilation_d, dilation_h, dilation_w = dilation
batch, in_depth, in_height, in_width, in_channel = get_const_tuple(Input.shape)
kernel_d, kernel_h, kernel_w, _, num_filter = get_const_tuple(Filter.shape)
assert (batch % 16 == 0 and in_channel % 16 == 0 and num_filter % 16 == 0) or \
(batch % 8 == 0 and in_channel % 16 == 0 and num_filter % 32 == 0) or \
(batch % 32 == 0 and in_channel % 16 == 0 and num_filter % 8 == 0), \
"The shape of (batch, in_channel, num_filter) "\
"must be multiple of (16, 16, 16) or (32, 16, 8) or (8, 16, 32) for now"
# compute the output shape
dilated_kernel_d = (kernel_d - 1) * dilation_d + 1
dilated_kernel_h = (kernel_h - 1) * dilation_h + 1
dilated_kernel_w = (kernel_w - 1) * dilation_w + 1
pad_front, pad_top, pad_left, pad_back, pad_down, pad_right = get_pad_tuple3d(
padding, (dilated_kernel_d, dilated_kernel_h, dilated_kernel_w))
out_channel = num_filter
out_depth = simplify((in_depth - dilated_kernel_d + pad_front + pad_back) // stride_d + 1)
out_height = simplify((in_height - dilated_kernel_h + pad_top + pad_down) // stride_h + 1)
out_width = simplify((in_width - dilated_kernel_w + pad_left + pad_right) // stride_w + 1)
pad_before = [0, pad_front, pad_top, pad_left, 0]
pad_after = [0, pad_back, pad_down, pad_right, 0]
PaddedInput = pad(Input, pad_before, pad_after, name="PaddedInput")
rc = te.reduce_axis((0, in_channel), name='rc')
rz = te.reduce_axis((0, kernel_d), name='rz')
ry = te.reduce_axis((0, kernel_h), name='ry')
rx = te.reduce_axis((0, kernel_w), name='rx')
# convert data type of input feature maps and weights
TransPaddedInput = te.compute(
PaddedInput.shape,
lambda n, d, h, w, c: PaddedInput[n, d, h, w, c].astype('float16'))
TransFilter = te.compute(
Filter.shape, lambda d, h, w, i, o: Filter[d, h, w, i, o].astype('float16'))
Output = te.compute(
(batch, out_depth, out_height, out_width, out_channel),
lambda nn, zz, yy, xx, ff: te.sum(
TransPaddedInput[nn,
zz * stride_d + rz * dilation_d,
yy * stride_h + ry * dilation_h,
xx * stride_w + rx * dilation_w,
rc].astype(out_dtype) *
TransFilter[rz, ry, rx, rc, ff].astype(out_dtype),
axis=[rz, ry, rx, rc]),
name="Conv3dOutput", tag="conv3d_ndhwc_tensorcore")
return Output
def schedule_ndhwc_tensorcore_cuda(cfg, s, Conv):
"""Schedule tensorcore template"""
kd, kh, kw, ic = s[Conv].op.reduce_axis
out_dtype = Conv.dtype
trans_paddata, kernel = s[Conv].op.input_tensors
in_dtype = trans_paddata.dtype
batch, _, _, _, _ = get_const_tuple(Conv.shape)
_, _, _, _, out_channels = get_const_tuple(kernel.shape)
paddata = s[trans_paddata].op.input_tensors
# inline the pad and dtype transform
s[trans_paddata].compute_inline()
s[kernel].compute_inline()
s[paddata[0]].compute_inline()
# Designate the memory hierarchy
AS = s.cache_read(trans_paddata, 'shared', [Conv])
WS = s.cache_read(kernel, 'shared', [Conv])
AF = s.cache_read(AS, 'wmma.matrix_a', [Conv])
WF = s.cache_read(WS, 'wmma.matrix_b', [Conv])
ConvF = s.cache_write(Conv, 'wmma.accumulator')
if Conv.op in s.outputs:
output = Conv
ConvS = s.cache_read(ConvF, 'shared', [Conv])
OL = ConvS
else:
output = s.outputs[0].output(0)
s[Conv].set_scope('shared')
OL = Conv
# Schedule for autotvm
cfg.define_knob("block_row_warps", [1, 2, 4])
cfg.define_knob("block_col_warps", [1, 2, 4])
cfg.define_knob("warp_row_tiles", [1, 2, 4])
cfg.define_knob("warp_col_tiles", [1, 2, 4])
cfg.define_knob("chunk", [1, 2, 4, 8])
cfg.define_knob("offset", [0, 8])
cfg.define_knob("vector_width", [1, 2, 4, 8])
if (batch % 16 == 0 and out_channels % 16 == 0):
cfg.define_knob("wmma_m", [16, 8, 32])
elif (batch % 8 == 0 and out_channels % 32 == 0):
cfg.define_knob("wmma_m", [8, 16, 32])
elif (batch % 32 == 0 and out_channels % 8 == 0):
cfg.define_knob("wmma_m", [32, 16, 8])
# fallback support
target = tvm.target.Target.current()
if cfg.is_fallback:
ref_log = autotvm.tophub.load_reference_log(
target.target_name, target.model, 'conv3d_ndhwc_tensorcore.cuda')
cfg.fallback_with_reference_log(ref_log)
block_row_warps = cfg["block_row_warps"].val
block_col_warps = cfg["block_col_warps"].val
warp_row_tiles = cfg["warp_row_tiles"].val
warp_col_tiles = cfg["warp_col_tiles"].val
chunk = cfg["chunk"].val
offset = cfg["offset"].val
wmma_m = cfg["wmma_m"].val
vector_width = cfg["vector_width"].val
wmma_k = 16
if wmma_m == 16:
wmma_n = 16
elif wmma_m == 8:
wmma_n = 32
elif wmma_m == 32:
wmma_n = 8
warp_size = 32
block_x = te.thread_axis('blockIdx.x')
block_y = te.thread_axis('blockIdx.y')
block_z = te.thread_axis('blockIdx.z')
thread_x = te.thread_axis('threadIdx.x')
thread_y = te.thread_axis('threadIdx.y')
thread_z = te.thread_axis('threadIdx.z')
# Define the intrin strides
def get_strides(extents):
return [np.prod(extents[i:]).tolist() for i in range(len(extents))]
AS_align = chunk * wmma_k + offset
WS_align = warp_col_tiles * block_col_warps * wmma_n + offset
block_factor_n = wmma_m * warp_row_tiles * block_row_warps
block_factor_o = wmma_n * warp_col_tiles * block_col_warps
CS_align = block_factor_o + offset
AS_strides = get_strides([1, 1, 1, AS_align, 1])
AL_strides = get_strides([1, 1, 1, wmma_k, 1])
WS_strides = get_strides([WS_align, 1])
WL_strides = get_strides([wmma_n * warp_col_tiles, 1])
CL_strides = get_strides([1, 1, 1, wmma_n * warp_col_tiles, 1])
CS_strides = get_strides([1, 1, 1, CS_align, 1])
# Schedule for output
nc, dc, hc, wc, oc = output.op.axis
block_k = s[output].fuse(dc, hc, wc)
s[output].bind(block_k, block_z)
block_i, nc = s[output].split(nc, factor=block_factor_n)
block_j, oc = s[output].split(oc, factor=block_factor_o)
s[output].reorder(block_k, block_i, block_j, nc, oc)
t = s[output].fuse(nc, oc)
t, ti = s[output].split(t, factor=vector_width)
t, tx = s[output].split(t, factor=warp_size)
t, ty = s[output].split(t, factor=block_row_warps)
t, tz = s[output].split(t, factor=block_col_warps)
s[output].bind(block_i, block_x)
s[output].bind(block_j, block_y)
s[output].bind(tz, thread_z)
s[output].bind(ty, thread_y)
s[output].bind(tx, thread_x)
s[output].vectorize(ti)
# Schedule wmma store
s[OL].compute_at(s[output], block_j)
nc, dc, hc, wc, oc = OL.op.axis
s[OL].reorder(dc, hc, wc, nc, oc)
s[OL].storage_align(wc, CS_align - 1, CS_align)
oc, ooc = s[OL].split(oc, factor=wmma_n)
oc, oci = s[OL].split(oc, factor=warp_col_tiles)
_, oc = s[OL].split(oc, factor=block_col_warps)
nc, nnc = s[OL].split(nc, factor=wmma_m)
nc, nci = s[OL].split(nc, factor=warp_row_tiles)
_, nc = s[OL].split(nc, factor=block_row_warps)
s[OL].reorder(nc, oc, nci, oci, nnc, ooc)
s[OL].bind(nc, thread_y)
s[OL].bind(oc, thread_z)
# Schedule wmma computation
s[ConvF].compute_at(s[OL], oc)
n, d, h, w, o = ConvF.op.axis
n, nnf = s[ConvF].split(n, factor=wmma_m)
o, oof = s[ConvF].split(o, factor=wmma_n)
ic, ii = s[ConvF].split(ic, factor=wmma_k)
ko, ki = s[ConvF].split(ic, factor=chunk)
s[ConvF].reorder(kd, kh, kw, ko, ki, n, o, nnf, oof, ii)
s[AF].compute_at(s[ConvF], ki)
s[WF].compute_at(s[ConvF], ki)
# Schedule wmma load
n, d, h, w, i = AF.op.axis
n, nn = s[AF].split(n, factor=wmma_m)
i, ii = s[AF].split(i, factor=wmma_k)
s[AF].reorder(n, i, nn, ii)
kd, kh, kw, i, o = WF.op.axis
i, ii = s[WF].split(i, factor=wmma_k)
o, oo = s[WF].split(o, factor=wmma_n)
s[WF].reorder(o, i, oo)
s[WF].reorder(i, o, ii, oo)
s[WS].compute_at(s[ConvF], ko)
s[AS].compute_at(s[ConvF], ko)
# Schedule for data's share memory
n, d, h, w, i = AS.op.axis
s[AS].reorder(d, h, w, n, i)
s[AS].storage_align(w, AS_align - 1, AS_align)
t = s[AS].fuse(n, i)
t, ti = s[AS].split(t, factor=vector_width)
t, tx = s[AS].split(t, factor=warp_size)
t, ty = s[AS].split(t, factor=block_row_warps)
_, tz = s[AS].split(t, factor=block_col_warps)
s[AS].bind(ty, thread_y)
s[AS].bind(tz, thread_z)
s[AS].bind(tx, thread_x)
s[AS].vectorize(ti)
# Schedule for kernel's share memory
kd, kh, kw, ic, o = WS.op.axis
t = s[WS].fuse(ic, o)
s[WS].storage_align(ic, WS_align - 1, WS_align)
t, ti = s[WS].split(t, factor=vector_width)
t, tx = s[WS].split(t, factor=warp_size)
t, ty = s[WS].split(t, factor=block_row_warps)
_, tz = s[WS].split(t, factor=block_col_warps)
s[WS].bind(ty, thread_y)
s[WS].bind(tz, thread_z)
s[WS].bind(tx, thread_x)
s[WS].vectorize(ti)
shape = (wmma_m, wmma_n, wmma_k)
# tensorize the wmma process
AS_shape = (wmma_m, 1, 1, 1, wmma_k)
AL_shape = (wmma_m, 1, 1, 1, wmma_k)
WS_shape = (wmma_k, wmma_n)
WL_shape = (wmma_k, wmma_n)
CL_shape = (wmma_m, 1, 1, 1, wmma_n)
CS_shape = (wmma_m, 1, 1, 1, wmma_n)
AL_gemm = te.placeholder(AL_shape, name='A', dtype=in_dtype)
WL_gemm = te.placeholder(WL_shape, name='B', dtype=in_dtype)
k_gemm = te.reduce_axis((0, wmma_k), name="k")
CL_compute = te.compute(CL_shape, lambda ii, t0, t1, t2, jj:
te.sum(AL_gemm[ii, t0, t1, t2, k_gemm].astype(out_dtype) * \
WL_gemm[k_gemm, jj].astype(out_dtype), axis=k_gemm),
name='C')
s[AF].tensorize(nn, intrin_wmma_load_matrix_A(AL_strides, AS_strides, shape,
"row_major", AS_shape, AL_shape, in_dtype))
s[WF].tensorize(ii, intrin_wmma_load_matrix_W(WL_strides, WS_strides, shape,
"row_major", WS_shape, WL_shape, in_dtype))
s[OL].tensorize(nnc, intrin_wmma_store_matrix(CS_strides, CL_strides,
shape, out_dtype, CL_shape, CS_shape))
s[ConvF].tensorize(nnf, intrin_wmma_gemm(AL_gemm, WL_gemm, CL_compute, AL_strides,
WL_strides, CL_strides, shape))
N, OD, OH, OW, CO = get_const_tuple(output.shape)
KD, KH, KW, CI, _ = get_const_tuple(kernel.shape)
cfg.add_flop(2 * N * OD * OH * OW * CO * CI * KD * KH * KW)
@autotvm.register_topi_compute("conv3d_ndhwc_tensorcore.cuda")
def conv3d_ndhwc_tensorcore(cfg, data, kernel, strides, padding, dilation, out_dtype):
"""Compute conv3d with tensorcore for NDHWC layout"""
return ndhwc_tensorcore_cuda(cfg, data, kernel, strides, padding, dilation, out_dtype)
@autotvm.register_topi_schedule("conv3d_ndhwc_tensorcore.cuda")
def schedule_conv3d_ndhwc_tensorcore(cfg, outs):
"""TOPI schedule callback"""
s = te.create_schedule([x.op for x in outs])
def _callback(op):
if 'conv3d_ndhwc_tensorcore' in op.tag:
schedule_ndhwc_tensorcore_cuda(cfg, s, op.output(0))
traverse_inline(s, outs[0].op, _callback)
return s
...@@ -493,12 +493,16 @@ def schedule_winograd_no_depth_cuda(cfg, s, output, pre_computed): ...@@ -493,12 +493,16 @@ def schedule_winograd_no_depth_cuda(cfg, s, output, pre_computed):
BB = s.cache_read(B0, 'shared', [OL]) BB = s.cache_read(B0, 'shared', [OL])
b = s[bgemm].fuse(b1, b2) b = s[bgemm].fuse(b1, b2)
y = s[bgemm].fuse(z, y) # Allow two different tiling strategies as both seem
# to work best in different cases.
cfg.define_knob("unroll_axis", [0, 1])
# tile and bind spatial axes # tile and bind spatial axes
bgemm_scope, b = s[bgemm].split(b, nparts=1) bgemm_scope, b = s[bgemm].split(b, nparts=1)
bz, vz, tz, zi = cfg["tile_b"].apply(s, C, b) bz, vz, tz, zi = cfg["tile_b"].apply(s, C, b)
by, vy, ty, yi = cfg["tile_y"].apply(s, C, y) by, vy, ty, yi = cfg["tile_y"].apply(s, C, z)
if cfg['unroll_axis'].val:
bx, vx, tx, xi = cfg["tile_x"].apply(s, C, y)
else:
bx, vx, tx, xi = cfg["tile_x"].apply(s, C, x) bx, vx, tx, xi = cfg["tile_x"].apply(s, C, x)
s[C].bind(bz, te.thread_axis("blockIdx.z")) s[C].bind(bz, te.thread_axis("blockIdx.z"))
s[C].bind(by, te.thread_axis("blockIdx.y")) s[C].bind(by, te.thread_axis("blockIdx.y"))
...@@ -510,6 +514,10 @@ def schedule_winograd_no_depth_cuda(cfg, s, output, pre_computed): ...@@ -510,6 +514,10 @@ def schedule_winograd_no_depth_cuda(cfg, s, output, pre_computed):
s[C].bind(ty, te.thread_axis("threadIdx.y")) s[C].bind(ty, te.thread_axis("threadIdx.y"))
s[C].bind(tx, te.thread_axis("threadIdx.x")) s[C].bind(tx, te.thread_axis("threadIdx.x"))
s[C].reorder(bgemm_scope, bz, by, bx, vz, vy, vx, tz, ty, tx, zi, yi, xi) s[C].reorder(bgemm_scope, bz, by, bx, vz, vy, vx, tz, ty, tx, zi, yi, xi)
if cfg['unroll_axis'].val:
s[C].unroll(x)
else:
s[C].unroll(y)
# tile reduction axes # tile reduction axes
s[OL].compute_at(s[C], tx) s[OL].compute_at(s[C], tx)
......
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, too-many-locals, too-many-arguments
"""Example code to do convolution."""
import numpy as np
import tvm
import topi
import topi.testing
from tvm import te
from tvm.contrib.pickle_memoize import memoize
from tvm.contrib import nvcc
from topi.nn.util import get_pad_tuple3d
from topi.util import get_const_tuple
_conv3d_ndhwc_tensorcore_implement = {
"cuda": (topi.cuda.conv3d_ndhwc_tensorcore, topi.cuda.schedule_conv3d_ndhwc_tensorcore)
}
def verify_conv3d_ndhwc(batch, in_channel, in_size, num_filter, kernel, stride,
padding, dilation=1, add_bias=False, add_relu=False, devices='cuda'):
"""Test the conv3d with tensorcore for ndhwc layout"""
pad_front, pad_top, pad_left, pad_back, pad_bottom, pad_right = get_pad_tuple3d(
padding, (kernel, kernel, kernel))
padding_sum = pad_front + pad_top + pad_left + pad_back + pad_bottom + pad_right
print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" % (
batch, in_channel, in_size, num_filter, kernel, stride, padding_sum, dilation))
in_depth = in_height = in_width = in_size
A = te.placeholder((batch, in_depth, in_height, in_width, in_channel), name='A')
W = te.placeholder((kernel, kernel, kernel, in_channel, num_filter), name='W')
bias = te.placeholder((1, 1, 1, 1, num_filter), name='bias')
a_shape = get_const_tuple(A.shape)
w_shape = get_const_tuple(W.shape)
bias_shape = get_const_tuple(bias.shape)
dtype = A.dtype
@memoize("topi.tests.test_topi_conv3d_ndhwc.verify_conv3d_ndhwc")
def get_ref_data():
a_np = np.random.uniform(size=a_shape).astype(dtype)
w_np = np.random.uniform(size=w_shape).astype(dtype)
b_np = np.random.uniform(size=bias_shape).astype(dtype)
dw_np = topi.testing.dilate_python(w_np, (1, 1, 1, dilation, dilation))
c_np = topi.testing.conv3d_ndhwc_python(a_np, dw_np, stride, padding)
if add_bias:
b_np = np.random.uniform(size=bias_shape).astype(dtype)
c_np += b_np
if add_relu:
c_np = np.maximum(c_np, 0)
return a_np, w_np, b_np, c_np
a_np, w_np, b_np, c_np = get_ref_data()
def check_device(device):
ctx = tvm.context(device, 0)
if not ctx.exist:
print("Skip because %s is not enabled" % device)
return
if not nvcc.have_tensorcore(ctx.compute_version):
print("skip because gpu does not support Tensor Cores")
return
print("Running on target: %s" % device)
with tvm.target.create(device):
fcompute, fschedule = topi.testing.dispatch(device, _conv3d_ndhwc_tensorcore_implement)
C = fcompute(A, W, stride, padding, dilation, 'float32')
if add_bias:
C = topi.add(C, bias)
if add_relu:
C = topi.nn.relu(C)
s = fschedule([C])
a = tvm.nd.array(a_np, ctx)
w = tvm.nd.array(w_np, ctx)
b = tvm.nd.array(b_np, ctx)
c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx)
if add_bias:
func = tvm.build(s, [A, W, bias, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (
batch, in_channel, in_size, num_filter, kernel, stride, padding_sum, dilation))
func(a, w, b, c)
else:
func = tvm.build(s, [A, W, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (
batch, in_channel, in_size, num_filter, kernel, stride, padding_sum, dilation))
func(a, w, c)
rtol = 1e-3
tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=rtol)
check_device(devices)
def test_conv3d_ndhwc_tensorcore():
"""Test the conv3d with tensorcore for ndhwc layout"""
verify_conv3d_ndhwc(16, 16, 14, 16, 3, 1, 1)
verify_conv3d_ndhwc(16, 64, 7, 64, 7, 1, 3)
verify_conv3d_ndhwc(16, 32, 7, 32, 7, 1, 3)
verify_conv3d_ndhwc(32, 16, 14, 16, 3, 1, 1, add_bias=True)
verify_conv3d_ndhwc(32, 16, 14, 16, 3, 1, 1, add_relu=True)
verify_conv3d_ndhwc(32, 16, 14, 16, 3, 1, 1, add_relu=True, add_bias=True)
verify_conv3d_ndhwc(16, 16, 17, 16, 7, 1, (3, 3, 3, 2, 2, 2))
verify_conv3d_ndhwc(16, 16, 17, 16, 7, 1, "SAME")
verify_conv3d_ndhwc(8, 16, 35, 32, 5, 1, "VALID")
verify_conv3d_ndhwc(16, 32, 16, 32, 3, 1, (1, 1, 1, 1, 1, 1))
verify_conv3d_ndhwc(16, 16, 12, 16, 3, 1, (1, 1, 1, 1, 1, 1))
if __name__ == "__main__":
test_conv3d_ndhwc_tensorcore()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment