Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
35485307
Commit
35485307
authored
Nov 10, 2017
by
Yizhi Liu
Committed by
Tianqi Chen
Nov 09, 2017
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
android gemm for topi/recipe (#628)
parent
8fea0879
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
116 additions
and
0 deletions
+116
-0
topi/recipe/gemm/android_gemm_square.py
+116
-0
No files found.
topi/recipe/gemm/android_gemm_square.py
0 → 100644
View file @
35485307
"""Example code to do square matrix multiplication on Android Phone."""
import
tvm
import
os
from
tvm.contrib
import
rpc
,
util
,
ndk
import
numpy
as
np
# Set to be address of tvm proxy.
proxy_host
=
os
.
environ
[
"TVM_ANDROID_RPC_PROXY_HOST"
]
proxy_port
=
9090
key
=
"android"
# Change target configuration.
# Run `adb shell cat /proc/cpuinfo` to find the arch.
arch
=
"arm64"
target
=
"llvm -target=
%
s-linux-android"
%
arch
def
ngflops
(
N
):
return
2.0
*
float
(
N
*
N
*
N
)
/
(
10
**
9
)
dtype
=
'float32'
def
evaluate
(
func
,
ctx
,
N
,
times
):
a_np
=
np
.
random
.
uniform
(
size
=
(
N
,
N
))
.
astype
(
dtype
)
b_np
=
np
.
random
.
uniform
(
size
=
(
N
,
N
))
.
astype
(
dtype
)
a
=
tvm
.
nd
.
array
(
a_np
,
ctx
)
b
=
tvm
.
nd
.
array
(
b_np
,
ctx
)
c
=
tvm
.
nd
.
array
(
np
.
zeros
((
N
,
N
),
dtype
=
dtype
),
ctx
)
time_f
=
func
.
time_evaluator
(
func
.
entry_name
,
ctx
,
number
=
times
)
cost
=
time_f
(
a
,
b
,
c
)
.
mean
gf
=
ngflops
(
N
)
/
cost
print
(
'
%
g secs/op,
%
g GFLOPS'
%
(
cost
,
gf
))
np
.
testing
.
assert_almost_equal
(
c
.
asnumpy
(),
a_np
.
dot
(
b_np
),
decimal
=
2
)
def
test_gemm_gpu
(
N
,
times
,
bn
,
num_block
,
num_thread
):
assert
(
bn
<=
N
)
assert
(
num_thread
*
num_thread
*
16
<=
N
)
assert
(
num_block
*
num_block
*
2
<=
N
)
A
=
tvm
.
placeholder
((
N
,
N
),
name
=
'A'
)
B
=
tvm
.
placeholder
((
N
,
N
),
name
=
'Btmp'
)
k
=
tvm
.
reduce_axis
((
0
,
N
),
name
=
'k'
)
packedB
=
tvm
.
compute
((
N
,
N
/
bn
,
bn
),
lambda
x
,
y
,
z
:
B
[
x
,
y
*
bn
+
z
],
name
=
'B'
)
C
=
tvm
.
compute
(
(
N
,
N
),
lambda
ii
,
jj
:
tvm
.
sum
(
A
[
ii
,
k
]
*
packedB
[
k
,
jj
/
bn
,
jj
%
bn
],
axis
=
k
),
name
=
'C'
)
s
=
tvm
.
create_schedule
(
C
.
op
)
CC
=
s
.
cache_write
(
C
,
"local"
)
block_x
=
tvm
.
thread_axis
(
"blockIdx.x"
)
block_y
=
tvm
.
thread_axis
(
"blockIdx.y"
)
thread_x
=
tvm
.
thread_axis
(
"threadIdx.x"
)
thread_y
=
tvm
.
thread_axis
(
"threadIdx.y"
)
thread_xz
=
tvm
.
thread_axis
((
0
,
2
),
"vthread"
,
name
=
"vx"
)
thread_yz
=
tvm
.
thread_axis
((
0
,
2
),
"vthread"
,
name
=
"vy"
)
pby
,
pbi
=
s
[
packedB
]
.
split
(
packedB
.
op
.
axis
[
0
],
nparts
=
num_thread
)
pbx
,
pbj
=
s
[
packedB
]
.
split
(
packedB
.
op
.
axis
[
1
],
nparts
=
num_thread
)
s
[
packedB
]
.
bind
(
pby
,
thread_y
)
s
[
packedB
]
.
bind
(
pbx
,
thread_x
)
pbz
,
pbk
=
s
[
packedB
]
.
split
(
packedB
.
op
.
axis
[
2
],
factor
=
8
)
s
[
packedB
]
.
vectorize
(
pbk
)
by
,
yi
=
s
[
C
]
.
split
(
C
.
op
.
axis
[
0
],
nparts
=
num_block
)
bx
,
xi
=
s
[
C
]
.
split
(
C
.
op
.
axis
[
1
],
nparts
=
num_thread
)
s
[
C
]
.
bind
(
by
,
block_y
)
s
[
C
]
.
bind
(
bx
,
thread_y
)
s
[
C
]
.
reorder
(
by
,
bx
,
yi
,
xi
)
tyz
,
yi
=
s
[
C
]
.
split
(
yi
,
nparts
=
2
)
ty
,
yi
=
s
[
C
]
.
split
(
yi
,
nparts
=
num_block
)
txz
,
xi
=
s
[
C
]
.
split
(
xi
,
nparts
=
2
)
tx
,
xi
=
s
[
C
]
.
split
(
xi
,
nparts
=
num_thread
)
s
[
C
]
.
reorder
(
tyz
,
txz
,
ty
,
tx
,
yi
,
xi
)
s
[
C
]
.
bind
(
tyz
,
thread_yz
)
s
[
C
]
.
bind
(
txz
,
thread_xz
)
s
[
C
]
.
bind
(
ty
,
block_x
)
s
[
C
]
.
bind
(
tx
,
thread_x
)
xyi
,
xxi
=
s
[
C
]
.
split
(
xi
,
factor
=
8
)
s
[
C
]
.
reorder
(
tyz
,
txz
,
ty
,
tx
,
yi
,
xyi
,
xxi
)
s
[
C
]
.
vectorize
(
xxi
)
s
[
CC
]
.
compute_at
(
s
[
C
],
yi
)
yo
,
xo
=
CC
.
op
.
axis
s
[
CC
]
.
reorder
(
k
,
yo
,
xo
)
xo
,
xi
=
s
[
CC
]
.
split
(
xo
,
factor
=
8
)
s
[
CC
]
.
vectorize
(
xi
)
ko
,
ki
=
s
[
CC
]
.
split
(
k
,
factor
=
2
)
s
[
CC
]
.
unroll
(
ki
)
print
(
tvm
.
lower
(
s
,
[
A
,
B
,
C
],
simple_mode
=
True
))
f
=
tvm
.
build
(
s
,
[
A
,
B
,
C
],
"opencl"
,
target_host
=
target
,
name
=
"gemm_gpu"
)
temp
=
util
.
tempdir
()
path_dso
=
temp
.
relpath
(
"gemm_gpu.so"
)
f
.
export_library
(
path_dso
,
ndk
.
create_shared
)
# connect to the proxy
remote
=
rpc
.
connect
(
proxy_host
,
proxy_port
,
key
=
key
)
ctx
=
remote
.
cl
(
0
)
remote
.
upload
(
path_dso
)
f
=
remote
.
load_module
(
"gemm_gpu.so"
)
evaluate
(
f
,
ctx
,
N
,
times
)
if
__name__
==
"__main__"
:
test_gemm_gpu
(
1024
,
times
=
5
,
bn
=
8
,
num_block
=
2
,
num_thread
=
8
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment