Commit 3486e2c2 by Animesh Jain Committed by Zhi

[QNN][Legalize] Specialize for Platforms without any fast Int8 arithmetic units. (#4307)

parent 8cd5ccea
...@@ -22,10 +22,43 @@ import tvm ...@@ -22,10 +22,43 @@ import tvm
from tvm import relay from tvm import relay
from .. import op as reg from .. import op as reg
#################################################
# Register the functions for different operators.
#################################################
# Registering QNN Conv2D legalization function. # Registering QNN Conv2D legalization function.
@reg.register_qnn_legalize("qnn.conv2d") @reg.register_qnn_legalize("qnn.conv2d")
def legalize_qnn_conv2d(attrs, inputs, types): def legalize_qnn_conv2d(attrs, inputs, types):
"""Legalizes QNN conv2d op. return qnn_conv2d_legalize(attrs, inputs, types)
# Registering QNN dense legalization function.
@reg.register_qnn_legalize("qnn.dense")
def legalize_qnn_dense(attrs, inputs, types):
return qnn_dense_legalize(attrs, inputs, types)
# Default to None. If overridden by target, this will not be run.
# Generic QNN Conv2D legalization function.
@tvm.target.generic_func
def qnn_conv2d_legalize(attrs, inputs, types):
"""Default legalization is None."""
return None
# Generic QNN Conv2D legalization function.
@tvm.target.generic_func
def qnn_dense_legalize(attrs, inputs, types):
"""Default legalization is None."""
return None
###################
# Helper functions.
###################
# Helper function for lowering in the abscence of fast Int8 arithmetic units.
def helper_no_fast_int8_hw_legalization(attrs, inputs, types, relay_op):
""" Converts QNN operators into a sequence of Relay operators that are friendly to HW that do
not have fast Int8 arithmetic. For example, for ARM, LLVM utilizes the assembly instructions
much more efficiently if the convolution or dense operator input datatypes are int16 instead of
int8. More details are present at https://github.com/apache/incubator-tvm/pull/4277.
Parameters Parameters
---------- ----------
...@@ -41,19 +74,27 @@ def legalize_qnn_conv2d(attrs, inputs, types): ...@@ -41,19 +74,27 @@ def legalize_qnn_conv2d(attrs, inputs, types):
result : tvm.relay.Expr result : tvm.relay.Expr
The legalized expr The legalized expr
""" """
return qnn_conv2d_legalize(attrs, inputs, types)
# Generic QNN Conv2D legalization function. # Collect the input exprs.
@tvm.target.generic_func data, kernel = inputs
def qnn_conv2d_legalize(attrs, inputs, types):
"""Default legalization is None."""
return None
# Intel x86 QNN Conv2D legalization function. input_zp = attrs['input_zero_point']
@qnn_conv2d_legalize.register('cpu') kernel_zp = attrs['kernel_zero_point']
def _qnn_conv2d_legalize(attrs, inputs, types):
"""Legalizes QNN conv2d op. VNNI supports u8 x i8 fast conv/MM. If the dtypes are already good, shift_data = relay.subtract(relay.cast(data, dtype='int16'),
we dont transform. Else, we shift the tensor values and zero points to change the dtype. relay.const(input_zp, 'int16'))
shift_kernel = relay.subtract(relay.cast(kernel, dtype='int16'),
relay.const(kernel_zp, 'int16'))
new_attrs = {k : attrs[k] for k in attrs.keys()}
del new_attrs['kernel_zero_point']
del new_attrs['input_zero_point']
return relay_op(shift_data, shift_kernel, **new_attrs)
# Helper function to change dtypes to uint8 x int8. Intel VNNI instructions prefer this setting.
def helper_change_dtypes_to_uint8_int8(attrs, inputs, types, relay_op):
"""Legalizes QNN conv2d/dense op for Intel HW. VNNI supports u8 x i8 fast conv/MM. If the dtypes
are already good, we dont transform. Else, we shift the tensor values and zero points to change
the dtype.
Converting from int8 to uint8 can be done in following manner. Converting from int8 to uint8 can be done in following manner.
...@@ -82,26 +123,18 @@ def _qnn_conv2d_legalize(attrs, inputs, types): ...@@ -82,26 +123,18 @@ def _qnn_conv2d_legalize(attrs, inputs, types):
The legalized expr The legalized expr
""" """
def _shift(data, out_dtype): def _shift(data, zero_point, out_dtype):
"""Shifts (add/subtracts) the qnn tensor with +/-128)""" """Shifts (add/subtracts) the qnn tensor with +/-128)"""
if out_dtype == 'uint8': if out_dtype == 'uint8':
shift = 128 shift = 128
elif out_dtype == 'int8': elif out_dtype == 'int8':
shift = -128 shift = -128
else: else:
raise ValueError("Unsupport out dtype.") raise ValueError("Unsupported out dtype.")
data_modified = relay.cast(data, 'int32') data_modified = relay.cast(data, 'int32')
data_modified = relay.add(data_modified, relay.const(shift, 'int32')) data_modified = relay.add(data_modified, relay.const(shift, 'int32'))
data_modified = relay.cast(data_modified, out_dtype) data_modified = relay.cast(data_modified, out_dtype)
return data_modified return (data_modified, zero_point + shift)
def _is_int8_hw_support(target):
"""
Checks to ensure that we can use Intel DLBoost instructions - Check if the target is skylake
and above.
"""
supported_arches = {'-mcpu=skylake-avx512', '-mcpu=cascadelake'}
return supported_arches.intersection(set(target.options))
# Collect the dtypes. # Collect the dtypes.
data_dtype = types[0].dtype data_dtype = types[0].dtype
...@@ -110,11 +143,6 @@ def _qnn_conv2d_legalize(attrs, inputs, types): ...@@ -110,11 +143,6 @@ def _qnn_conv2d_legalize(attrs, inputs, types):
# Collect the input exprs. # Collect the input exprs.
data, kernel = inputs data, kernel = inputs
# The VNNI transformations are applicable only Skylake and above.g
target = tvm.target.current_target(allow_none=False)
if not _is_int8_hw_support(target):
return None
# VNNI supports u8 x i8 fast conv/MM. Don't do anything if it is already satisfied. # VNNI supports u8 x i8 fast conv/MM. Don't do anything if it is already satisfied.
if data_dtype == 'uint8' and kernel_dtype == 'int8': if data_dtype == 'uint8' and kernel_dtype == 'int8':
return None return None
...@@ -123,18 +151,118 @@ def _qnn_conv2d_legalize(attrs, inputs, types): ...@@ -123,18 +151,118 @@ def _qnn_conv2d_legalize(attrs, inputs, types):
input_zp = attrs['input_zero_point'] input_zp = attrs['input_zero_point']
if data_dtype == 'int8': if data_dtype == 'int8':
# Compute (QA + 128) and (zp_a + 128) # Compute (QA + 128) and (zp_a + 128)
data = _shift(data, 'uint8') data, input_zp = _shift(data, input_zp, 'uint8')
input_zp = input_zp + 128
# Shift kernel if necessary. # Shift kernel if necessary.
kernel_zp = attrs['kernel_zero_point'] kernel_zp = attrs['kernel_zero_point']
if kernel_dtype == 'uint8': if kernel_dtype == 'uint8':
# Compute (QA - 128) and (zp_a - 128) # Compute (QA - 128) and (zp_a - 128)
kernel = _shift(kernel, 'int8') kernel, kernel_zp = _shift(kernel, kernel_zp, 'int8')
kernel_zp = kernel_zp - 128
# Call qnn.conv2d with modified inputs and zero points. # Call qnn.conv2d with modified inputs and zero points.
new_attrs = {k : attrs[k] for k in attrs.keys()} new_attrs = {k : attrs[k] for k in attrs.keys()}
new_attrs['input_zero_point'] = input_zp new_attrs['input_zero_point'] = input_zp
new_attrs['kernel_zero_point'] = kernel_zp new_attrs['kernel_zero_point'] = kernel_zp
return relay.qnn.op.conv2d(data, kernel, **new_attrs) return relay_op(data, kernel, **new_attrs)
# Helper function to change dtypes to be same. ARM dotprod instructions prefer this setting.
def helper_change_dtypes_to_be_same(attrs, inputs, types, relay_op):
""" Sometimes MxNet + MLDNN can lead to uint8 x int8 datatypes for the conv inputs. However,
many devices like ARM prefer the datatypes to be same for the HW units. This helper transforms
conv2d/dense such that both the dtypes are same.
Parameters
----------
attrs : tvm.attrs.Attrs
Attributes of current convolution
inputs : list of tvm.relay.Expr
The args of the Relay expr to be legalized
types : list of types
List of input and output types
Returns
-------
result : tvm.relay.Expr
The legalized expr
"""
def _shift(data, zero_point, out_dtype):
"""Shifts (adds/subtracts) the qnn tensor by 128)"""
if out_dtype == 'uint8':
shift = 128
elif out_dtype == 'int8':
shift = -128
else:
raise ValueError("Unsupported out dtype.")
data_modified = relay.cast(data, 'int32')
data_modified = relay.add(data_modified, relay.const(shift, 'int32'))
data_modified = relay.cast(data_modified, out_dtype)
return (data_modified, zero_point + shift)
# Collect the dtypes.
data_dtype = types[0].dtype
kernel_dtype = types[1].dtype
if data_dtype == kernel_dtype:
return None
# Collect the input exprs.
data, kernel = inputs
assert 'int8' in data_dtype and 'int8' in kernel_dtype, \
"Qnn Conv2D/Dense only accepts uint8 or int8 inputs"
# Shift input if necessary.
input_zp = attrs['input_zero_point']
data, input_zp = _shift(data, input_zp, kernel_dtype)
new_attrs = {k : attrs[k] for k in attrs.keys()}
new_attrs['input_zero_point'] = input_zp
return relay_op(data, kernel, **new_attrs)
def is_fast_int8_on_intel():
""" Checks whether the hardware has support for fast Int8 arithmetic operations. """
target = tvm.target.current_target(allow_none=False)
intel_supported_arches = {'-mcpu=skylake-avx512', '-mcpu=cascadelake'}
return intel_supported_arches.intersection(set(target.options))
def is_fast_int8_on_arm():
""" Checks whether the hardware has support for fast Int8 arithmetic operations. """
target = tvm.target.current_target(allow_none=False)
return '+v8.2a,+dotprod' in ' '.join(target.options)
########################
# ARM CPU legalizations.
########################
@qnn_conv2d_legalize.register('arm_cpu')
def _qnn_conv2d_legalize_arm_cpu(attrs, inputs, types):
# ARM prefers the dtypes to be same.
if is_fast_int8_on_arm():
return helper_change_dtypes_to_be_same(attrs, inputs, types, relay.qnn.op.conv2d)
return helper_no_fast_int8_hw_legalization(attrs, inputs, types, relay.nn.conv2d)
@qnn_dense_legalize.register('arm_cpu')
def _qnn_dense_legalize_arm_cpu(attrs, inputs, types):
# ARM prefers the dtypes to be same.
if is_fast_int8_on_arm():
return helper_change_dtypes_to_be_same(attrs, inputs, types, relay.qnn.op.dense)
return helper_no_fast_int8_hw_legalization(attrs, inputs, types, relay.nn.dense)
##########################
# Intel CPU legalizations.
##########################
@qnn_conv2d_legalize.register('cpu')
def _qnn_conv2d_legalize_intel_cpu(attrs, inputs, types):
# The VNNI transformations prefer uint8 x int8 datatypes.
if is_fast_int8_on_intel():
return helper_change_dtypes_to_uint8_int8(attrs, inputs, types, relay.qnn.op.conv2d)
return helper_no_fast_int8_hw_legalization(attrs, inputs, types, relay.nn.conv2d)
@qnn_dense_legalize.register('cpu')
def _qnn_dense_legalize_intel_cpu(attrs, inputs, types):
# The VNNI transformations prefer uint8 x int8 datatypes.
if is_fast_int8_on_intel():
return helper_change_dtypes_to_uint8_int8(attrs, inputs, types, relay.qnn.op.dense)
return helper_no_fast_int8_hw_legalization(attrs, inputs, types, relay.nn.dense)
...@@ -23,6 +23,14 @@ from tvm.contrib import graph_runtime ...@@ -23,6 +23,14 @@ from tvm.contrib import graph_runtime
from tvm.relay.qnn.op import register_qnn_legalize from tvm.relay.qnn.op import register_qnn_legalize
from tvm.relay import transform, analysis from tvm.relay import transform, analysis
def alpha_equal(x, y):
"""
Wrapper around alpha equality which ensures that
the hash function respects equality.
"""
x = x['main']
y = y['main']
return analysis.alpha_equal(x, y) and analysis.structural_hash(x) == analysis.structural_hash(y)
def run_opt_pass(expr, passes): def run_opt_pass(expr, passes):
passes = passes if isinstance(passes, list) else [passes] passes = passes if isinstance(passes, list) else [passes]
...@@ -82,11 +90,11 @@ def test_qnn_legalize(): ...@@ -82,11 +90,11 @@ def test_qnn_legalize():
b = run_opt_pass(expected(), transform.InferType()) b = run_opt_pass(expected(), transform.InferType())
assert analysis.alpha_equal(a, b), "Actual = \n" + str(a) assert analysis.alpha_equal(a, b), "Actual = \n" + str(a)
def test_qnn_legalize_qnn_conv2d(): def test_qnn_legalize_qnn_conv2d():
data_shape = (1, 64, 256, 256) def _get_mod(data_dtype, kernel_dtype):
kernel_shape = (128, 64, 3, 3) data_shape = (1, 64, 256, 256)
for dtype in ['uint8', 'int8']: kernel_shape = (128, 64, 3, 3)
data_dtype = kernel_dtype = dtype
data = relay.var("data", shape=data_shape, data = relay.var("data", shape=data_shape,
dtype=data_dtype) dtype=data_dtype)
kernel = relay.var("kernel", shape=kernel_shape, kernel = relay.var("kernel", shape=kernel_shape,
...@@ -104,12 +112,145 @@ def test_qnn_legalize_qnn_conv2d(): ...@@ -104,12 +112,145 @@ def test_qnn_legalize_qnn_conv2d():
mod = relay.Function(relay.analysis.free_vars(func), func) mod = relay.Function(relay.analysis.free_vars(func), func)
mod = relay.Module.from_expr(mod) mod = relay.Module.from_expr(mod)
return mod
# Check uint8 x uint8 and int8 x int8 transformation
for dtype in ('uint8', 'int8'):
mod = _get_mod(dtype, dtype)
#############################################################
# Check transformations for platforms with fast Int8 support.
#############################################################
# Check that Intel VNNI gets picked up.
with tvm.target.create('llvm -mcpu=skylake-avx512'): with tvm.target.create('llvm -mcpu=skylake-avx512'):
mod = relay.qnn.transform.Legalize()(mod) legalized_mod = relay.qnn.transform.Legalize()(mod)
assert 'cast' in legalized_mod.astext() and "qnn.conv2d" in legalized_mod.astext()
# Since same dtype, there should not be any transformation
with tvm.target.create('llvm -device=arm_cpu -target=aarch64-linux-gnu -mattr=+v8.2a,+dotprod'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert alpha_equal(mod, legalized_mod)
################################################################
# Check transformations for platforms without fast Int8 support.
################################################################
# Older Intel versions.
with tvm.target.create('llvm'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert 'cast' in legalized_mod.astext() and "qnn" not in legalized_mod.astext()
# Older ARM vesions.
with tvm.target.create('llvm -device=arm_cpu -target=aarch64-linux-gnu'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert 'cast' in legalized_mod.astext() and "qnn" not in legalized_mod.astext()
# Check uint8 x int8 transformation
mod = _get_mod('uint8', 'int8')
#############################################################
# Check transformations for platforms with fast Int8 support.
#############################################################
# Check no transformation for Intel VNNI.
with tvm.target.create('llvm -mcpu=skylake-avx512'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert alpha_equal(mod, legalized_mod)
# ARM - so check that transformation has happened.
with tvm.target.create('llvm -device=arm_cpu -target=aarch64-linux-gnu -mattr=+v8.2a,+dotprod'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert 'cast' in legalized_mod.astext() and "qnn.conv2d" in legalized_mod.astext()
################################################################
# Check transformations for platforms without fast Int8 support.
################################################################
# Older Intel versions.
with tvm.target.create('llvm'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert 'cast' in legalized_mod.astext() and "qnn" not in legalized_mod.astext()
# Older ARM vesions.
with tvm.target.create('llvm -device=arm_cpu -target=aarch64-linux-gnu'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert 'cast' in legalized_mod.astext() and "qnn" not in legalized_mod.astext()
def test_qnn_legalize_qnn_dense():
def _get_mod(data_dtype, kernel_dtype):
data_shape = (10, 3)
kernel_shape = (20, 3)
data = relay.var("data", shape=data_shape,
dtype=data_dtype)
kernel = relay.var("kernel", shape=kernel_shape,
dtype=kernel_dtype)
func = relay.qnn.op.dense(
data, kernel,
input_zero_point=1,
kernel_zero_point=1,
out_dtype='int32')
mod = relay.Function(relay.analysis.free_vars(func), func)
mod = relay.Module.from_expr(mod)
return mod
# Check uint8 x uint8 and int8 x int8 transformation
for dtype in ('uint8', 'int8'):
mod = _get_mod(dtype, dtype)
#############################################################
# Check transformations for platforms with fast Int8 support.
#############################################################
# Check that Intel VNNI gets picked up.
with tvm.target.create('llvm -mcpu=skylake-avx512'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert 'cast' in legalized_mod.astext() and "qnn.dense" in legalized_mod.astext()
# Since same dtype, there should not be any transformation
with tvm.target.create('llvm -device=arm_cpu -target=aarch64-linux-gnu -mattr=+v8.2a,+dotprod'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert alpha_equal(mod, legalized_mod)
################################################################
# Check transformations for platforms without fast Int8 support.
################################################################
# Older Intel versions.
with tvm.target.create('llvm'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert 'cast' in legalized_mod.astext() and "qnn" not in legalized_mod.astext()
# Older ARM vesions.
with tvm.target.create('llvm -device=arm_cpu -target=aarch64-linux-gnu'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert 'cast' in legalized_mod.astext() and "qnn" not in legalized_mod.astext()
# Check uint8 x int8 transformation
mod = _get_mod('uint8', 'int8')
#############################################################
# Check transformations for platforms with fast Int8 support.
#############################################################
# Check no transformation for Intel VNNI.
with tvm.target.create('llvm -mcpu=skylake-avx512'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert alpha_equal(mod, legalized_mod)
# ARM - so check that transformation has happened.
with tvm.target.create('llvm -device=arm_cpu -target=aarch64-linux-gnu -mattr=+v8.2a,+dotprod'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert 'cast' in legalized_mod.astext() and "qnn.dense" in legalized_mod.astext()
################################################################
# Check transformations for platforms without fast Int8 support.
################################################################
# Older Intel versions.
with tvm.target.create('llvm'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert 'cast' in legalized_mod.astext() and "qnn" not in legalized_mod.astext()
# Older ARM vesions.
with tvm.target.create('llvm -device=arm_cpu -target=aarch64-linux-gnu'):
legalized_mod = relay.qnn.transform.Legalize()(mod)
assert 'cast' in legalized_mod.astext() and "qnn" not in legalized_mod.astext()
assert 'cast' in mod.astext()
if __name__ == "__main__": if __name__ == "__main__":
test_qnn_legalize() test_qnn_legalize()
test_qnn_legalize_qnn_conv2d() test_qnn_legalize_qnn_conv2d()
test_qnn_legalize_qnn_dense()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment