Commit 34648272 by Steven S. Lyubomirsky Committed by Tianqi Chen

[Relay] Port LSTM to Relay for testing (#2011)

parent 0edb9443
...@@ -6,4 +6,5 @@ from . import resnet ...@@ -6,4 +6,5 @@ from . import resnet
from . import dqn from . import dqn
from . import dcgan from . import dcgan
from . import mobilenet from . import mobilenet
from . import lstm
from .config import ctx_list from .config import ctx_list
...@@ -105,7 +105,7 @@ def conv2d_transpose(data, weight=None, **kwargs): ...@@ -105,7 +105,7 @@ def conv2d_transpose(data, weight=None, **kwargs):
weight = relay.var(name + "_weight") weight = relay.var(name + "_weight")
return relay.nn.conv2d_transpose(data, weight, **kwargs) return relay.nn.conv2d_transpose(data, weight, **kwargs)
def dense_add_bias(data, weight=None, bias=None, **kwargs): def dense_add_bias(data, weight=None, bias=None, units=None, **kwargs):
"""Wrapper of dense which automatically creates weights if not given. """Wrapper of dense which automatically creates weights if not given.
Parameters Parameters
...@@ -133,6 +133,6 @@ def dense_add_bias(data, weight=None, bias=None, **kwargs): ...@@ -133,6 +133,6 @@ def dense_add_bias(data, weight=None, bias=None, **kwargs):
weight = relay.var(name + "_weight") weight = relay.var(name + "_weight")
if not bias: if not bias:
bias = relay.var(name + "_bias") bias = relay.var(name + "_bias")
data = relay.nn.dense(data, weight, **kwargs) data = relay.nn.dense(data, weight, units, **kwargs)
data = relay.nn.bias_add(data, bias) data = relay.nn.bias_add(data, bias)
return data return data
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Implementation of a Long Short-Term Memory (LSTM) cell.
Adapted from:
https://gist.github.com/merrymercy/5eb24e3b019f84200645bd001e9caae9
"""
from tvm import relay
from . import layers
from .init import create_workload
def lstm_cell(num_hidden, batch_size=1, dtype="float32", name=""):
"""Long-Short Term Memory (LSTM) network cell.
Parameters
----------
num_hidden : int
Number of units in output symbol.
batch_size : int
Batch size (length of states).
Returns
-------
result : tvm.relay.Function
A Relay function that evaluates an LSTM cell.
The function takes in a tensor of input data, a tuple of two
states, and weights and biases for dense operations on the
inputs and on the state. It returns a tuple with two members,
an output tensor and a tuple of two new states.
"""
builder = relay.ScopeBuilder()
input_type = relay.TensorType((batch_size, num_hidden), dtype)
weight_type = relay.TensorType((num_hidden, 4*num_hidden), dtype)
bias_type = relay.TensorType((4*num_hidden,), dtype)
dense_type = relay.TensorType((batch_size, 4*num_hidden), dtype)
slice_type = relay.TupleType([input_type, input_type,
input_type, input_type])
ret_type = relay.TupleType([input_type,
relay.TupleType([input_type, input_type])])
inputs = relay.Var("inputs", input_type)
states = relay.Var("states",
relay.TupleType([input_type, input_type]))
i2h_weight = relay.Var("i2h_weight", weight_type)
i2h_bias = relay.Var("i2h_bias", bias_type)
h2h_weight = relay.Var("h2h_weight", weight_type)
h2h_bias = relay.Var("h2h_bias", bias_type)
i2h = builder.let(("i2h", dense_type),
layers.dense_add_bias(
data=inputs,
units=num_hidden * 4,
weight=i2h_weight, bias=i2h_bias,
name="%si2h" % name))
h2h = builder.let(("h2h", dense_type),
layers.dense_add_bias(
data=relay.TupleGetItem(states, 0),
units=num_hidden * 4,
weight=h2h_weight, bias=h2h_bias,
name="%sh2h" % name))
gates = builder.let(("gates", dense_type), relay.add(i2h, h2h))
slice_gates = builder.let(("slice_gates", slice_type),
relay.split(gates,
indices_or_sections=4,
axis=1).astuple())
in_gate = builder.let(("in_gate", input_type),
relay.sigmoid(relay.TupleGetItem(slice_gates, 0)))
forget_gate = builder.let(("forget_gate", input_type),
relay.sigmoid(relay.TupleGetItem(slice_gates, 1)))
in_transform = builder.let(("in_transform", input_type),
relay.tanh(relay.TupleGetItem(slice_gates, 2)))
out_gate = builder.let(("out_gate", input_type),
relay.sigmoid(relay.TupleGetItem(slice_gates, 3)))
next_c = builder.let(("next_c", input_type),
relay.add(relay.multiply(forget_gate,
relay.TupleGetItem(states, 1)),
relay.multiply(in_gate, in_transform)))
next_h = builder.let(("next_h", input_type),
relay.multiply(out_gate, relay.tanh(next_c)))
ret = builder.let(("ret", ret_type),
relay.Tuple([next_h, relay.Tuple([next_h, next_c])]))
builder.ret(ret)
body = builder.get()
return relay.Function([inputs, states, i2h_weight,
i2h_bias, h2h_weight, h2h_bias],
body, ret_type)
def get_net(iterations, num_hidden, batch_size=1, dtype="float32"):
'''Constructs an unrolled RNN with LSTM cells'''
input_type = relay.TensorType((batch_size, num_hidden), dtype)
weight_type = relay.TensorType((num_hidden, 4*num_hidden), dtype)
bias_type = relay.TensorType((4*num_hidden,), dtype)
state_type = relay.TupleType([input_type, input_type])
cell_type = relay.TupleType([input_type, state_type])
builder = relay.ScopeBuilder()
zeros = builder.let(("zeros", input_type),
relay.zeros((batch_size, num_hidden), dtype))
init_states = builder.let(("init_states", state_type),
relay.Tuple([zeros, zeros]))
states = init_states
out = None
for i in range(iterations):
inputs = relay.Var("data", input_type)
i2h_weight = relay.Var("i2h_%s_weight" % i, weight_type)
i2h_bias = relay.Var("i2h_%i_bias" % i, bias_type)
h2h_weight = relay.Var("h2h_%s_weight" % i, weight_type)
h2h_bias = relay.Var("h2h_%s_bias" % i, bias_type)
cell_fn = lstm_cell(num_hidden, batch_size, dtype, "lstm_%s" % i)
call = builder.let(("call_%s" % i, cell_type),
relay.Call(cell_fn,
[inputs, states, i2h_weight,
i2h_bias, h2h_weight, h2h_bias]))
new_out = builder.let(("out_%s" % i, input_type),
relay.TupleGetItem(call, 0))
new_states = builder.let(("states_%s" % i, state_type),
relay.TupleGetItem(call, 1))
states = new_states
out = new_out
builder.ret(out)
body = builder.get()
args = relay.ir_pass.free_vars(body)
return relay.Function(args, body, input_type)
def get_workload(iterations, num_hidden, batch_size=1, dtype="float32"):
"""Get benchmark workload for an LSTM RNN.
Parameters
----------
iterations : int
The number of iterations in the desired LSTM RNN.
num_hidden : int
The size of the hiddxen state
batch_size : int, optional (default 1)
The batch size used in the model
dtype : str, optional (default "float32")
The data type
Returns
-------
net : nnvm.symbol
The computational graph
params : dict of str to NDArray
The parameters.
"""
net = get_net(iterations, num_hidden, batch_size, dtype)
return create_workload(net)
...@@ -1078,7 +1078,7 @@ bool SplitRel(const Array<Type>& types, ...@@ -1078,7 +1078,7 @@ bool SplitRel(const Array<Type>& types,
} }
CHECK_LT(axis, data->shape.size()) CHECK_LT(axis, data->shape.size())
<< "axis should be within the input dimension range."; << "axis should be within the input dimension range.";
CHECK_GT(axis, 0) CHECK_GE(axis, 0)
<< "axis should be within the input dimension range."; << "axis should be within the input dimension range.";
if (const IntImm* sections = param->indices_or_sections.as<IntImm>()) { if (const IntImm* sections = param->indices_or_sections.as<IntImm>()) {
......
...@@ -97,10 +97,12 @@ def test_variable_name(): ...@@ -97,10 +97,12 @@ def test_variable_name():
v1 = relay.var("1") v1 = relay.var("1")
assert "%v1" in v1.astext() assert "%v1" in v1.astext()
def test_mlp(): def test_mlp():
net, params = tvm.relay.testing.mlp.get_workload(batch_size=1) net, params = tvm.relay.testing.mlp.get_workload(batch_size=1)
net.astext() net.astext()
def test_resnet(): def test_resnet():
net, params = tvm.relay.testing.resnet.get_workload(batch_size=1) net, params = tvm.relay.testing.resnet.get_workload(batch_size=1)
net.astext() net.astext()
...@@ -117,6 +119,12 @@ def test_dcgan(): ...@@ -117,6 +119,12 @@ def test_dcgan():
net, params = tvm.relay.testing.dcgan.get_workload(batch_size=1) net, params = tvm.relay.testing.dcgan.get_workload(batch_size=1)
net.astext() net.astext()
def test_lstm():
net, params = tvm.relay.testing.lstm.get_workload(4, 4)
net.astext()
if __name__ == "__main__": if __name__ == "__main__":
do_print[0] = True do_print[0] = True
test_resnet() test_resnet()
......
...@@ -161,6 +161,14 @@ def test_split_infer_type(): ...@@ -161,6 +161,14 @@ def test_split_infer_type():
relay.ty.TensorType((5, 1, 2, 2), "float32"), relay.ty.TensorType((5, 1, 2, 2), "float32"),
relay.ty.TensorType((5, 1, 2, 2), "float32")])), relay.ty.TensorType((5, 1, 2, 2), "float32")])),
axis=1) axis=1)
verify_split((5, 5, 2, 2), 5,
relay.ty.TupleType(tvm.convert([
relay.ty.TensorType((1, 5, 2, 2), "float32"),
relay.ty.TensorType((1, 5, 2, 2), "float32"),
relay.ty.TensorType((1, 5, 2, 2), "float32"),
relay.ty.TensorType((1, 5, 2, 2), "float32"),
relay.ty.TensorType((1, 5, 2, 2), "float32")])),
axis=0)
verify_split((d1, d2, d3, d4), 4, verify_split((d1, d2, d3, d4), 4,
relay.ty.TupleType(tvm.convert([ relay.ty.TupleType(tvm.convert([
relay.ty.TensorType((d1, d2, d3/4, d4), "float32"), relay.ty.TensorType((d1, d2, d3/4, d4), "float32"),
...@@ -168,6 +176,11 @@ def test_split_infer_type(): ...@@ -168,6 +176,11 @@ def test_split_infer_type():
relay.ty.TensorType((d1, d2, d3/4, d4), "float32"), relay.ty.TensorType((d1, d2, d3/4, d4), "float32"),
relay.ty.TensorType((d1, d2, d3/4, d4), "float32")])), relay.ty.TensorType((d1, d2, d3/4, d4), "float32")])),
axis=2) axis=2)
verify_split((d1, d2, d3, d4), 2,
relay.ty.TupleType(tvm.convert([
relay.ty.TensorType((d1/2, d2, d3, d4), "float32"),
relay.ty.TensorType((d1/2, d2, d3, d4), "float32")])),
axis=0)
verify_split((d1, d2, d3, d4), (2, 4, 7), verify_split((d1, d2, d3, d4), (2, 4, 7),
relay.ty.TupleType(tvm.convert([ relay.ty.TupleType(tvm.convert([
relay.ty.TensorType((d1, 2, d3, d4), "float32"), relay.ty.TensorType((d1, 2, d3, d4), "float32"),
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment