Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
331abacb
Commit
331abacb
authored
Dec 12, 2018
by
Siju
Committed by
Tianqi Chen
Dec 11, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Testcases of onnx (#2274)
parent
a8b34309
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
166 additions
and
8 deletions
+166
-8
nnvm/python/nnvm/frontend/onnx.py
+3
-3
nnvm/tests/python/frontend/onnx/test_forward.py
+163
-5
No files found.
nnvm/python/nnvm/frontend/onnx.py
View file @
331abacb
...
...
@@ -346,9 +346,9 @@ class ThresholdedRelu(OnnxOpConverter):
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
alpha
=
float
(
attr
.
get
(
'alpha'
,
0
.0
))
return
_sym
.
relu
(
inputs
[
0
]
-
alpha
)
alpha
=
float
(
attr
.
get
(
'alpha'
,
1
.0
))
alpha_tensor
=
_sym
.
full_like
(
inputs
[
0
],
fill_value
=
float
(
alpha
)
)
return
_sym
.
elemwise_mul
(
inputs
[
0
],
_sym
.
greater
(
inputs
[
0
],
alpha_tensor
))
class
ImageScaler
(
OnnxOpConverter
):
...
...
nnvm/tests/python/frontend/onnx/test_forward.py
View file @
331abacb
...
...
@@ -10,7 +10,7 @@ import onnx
from
model_zoo
import
super_resolution
,
squeezenet1_1
,
lenet
,
resnet18_1_0
from
onnx
import
helper
,
TensorProto
def
get_tvm_output
(
graph_def
,
input_data
,
target
,
ctx
,
output_shape
,
output_dtype
=
'float32'
):
def
get_tvm_output
(
graph_def
,
input_data
,
target
,
ctx
,
output_shape
=
None
,
output_dtype
=
'float32'
):
""" Generic function to execute and get tvm output"""
sym
,
params
=
nnvm
.
frontend
.
from_onnx
(
graph_def
)
...
...
@@ -47,12 +47,12 @@ def get_tvm_output(graph_def, input_data, target, ctx, output_shape, output_dtyp
# get outputs
if
isinstance
(
output_shape
,
list
)
and
isinstance
(
output_dtype
,
list
):
tvm_output_list
=
[]
for
i
,
s
in
enumerate
(
output_shape
):
tvm_output
=
m
.
get_output
(
i
,
tvm
.
nd
.
empty
((
s
),
output_dtype
[
i
])
)
for
i
,
_
in
enumerate
(
output_shape
):
tvm_output
=
m
.
get_output
(
i
)
tvm_output_list
.
append
(
tvm_output
.
asnumpy
())
return
tvm_output_list
else
:
tvm_output
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
((
output_shape
),
output_dtype
)
)
tvm_output
=
m
.
get_output
(
0
)
return
tvm_output
.
asnumpy
()
def
get_caffe2_output
(
model
,
x
,
dtype
=
'float32'
):
...
...
@@ -273,7 +273,7 @@ def test_slice():
_test_slice_iteration
(
x
,
x
[:,
0
:
-
1
],
(
0
),
(
-
1
),
(
1
))
def
_test_onnx_op_elementwise
(
inshape
,
outfunc
,
npargs
,
dtype
,
opname
,
kwargs
):
indata
=
np
.
random
.
uniform
(
size
=
(
2
,
4
,
5
,
6
)
)
.
astype
(
dtype
)
indata
=
np
.
random
.
uniform
(
-
1
,
1
,
size
=
inshape
)
.
astype
(
dtype
)
outdata
=
outfunc
(
indata
,
**
npargs
)
y
=
helper
.
make_node
(
opname
,
[
'in'
],
[
'out'
],
**
kwargs
)
...
...
@@ -858,6 +858,154 @@ def test_split():
verify_split
([[
1.
,
2.
,
3.
,
4.
],
[
7.
,
8.
,
9.
,
10.
]],
[[[
1.
,
2.
],
[
7.
,
8.
]],
[[
3.
,
4.
],
[
9.
,
10.
]]],
[
2
,
2
],
1
)
def
test_binary_ops
():
in_shape
=
(
1
,
2
,
3
,
3
)
dtype
=
"float32"
out_shape
=
in_shape
def
verify_binary_ops
(
op
,
x
,
y
,
out_np
,
broadcast
=
None
):
if
broadcast
is
None
:
z
=
helper
.
make_node
(
op
,
[
'in1'
,
'in2'
],
[
'out'
])
else
:
z
=
helper
.
make_node
(
op
,
[
'in1'
,
'in2'
],
[
'out'
],
broadcast
=
1
)
graph
=
helper
.
make_graph
([
z
],
'_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in1"
,
TensorProto
.
FLOAT
,
list
(
in_shape
)),
helper
.
make_tensor_value_info
(
"in2"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'_test'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
[
x
,
y
],
target
,
ctx
)
tvm
.
testing
.
assert_allclose
(
out_np
,
tvm_out
)
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
dtype
)
y
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
dtype
)
z
=
np
.
random
.
uniform
(
size
=
(
3
,))
.
astype
(
dtype
)
verify_binary_ops
(
"Add"
,
x
,
y
,
x
+
y
,
broadcast
=
None
)
verify_binary_ops
(
"Add"
,
x
,
z
,
x
+
z
,
broadcast
=
True
)
verify_binary_ops
(
"Sub"
,
x
,
y
,
x
-
y
,
broadcast
=
None
)
verify_binary_ops
(
"Sub"
,
x
,
z
,
x
-
z
,
broadcast
=
True
)
verify_binary_ops
(
"Mul"
,
x
,
y
,
x
*
y
,
broadcast
=
None
)
verify_binary_ops
(
"Mul"
,
x
,
z
,
x
*
z
,
broadcast
=
True
)
verify_binary_ops
(
"Div"
,
x
,
y
,
x
/
y
,
broadcast
=
None
)
verify_binary_ops
(
"Div"
,
x
,
z
,
x
/
z
,
broadcast
=
True
)
verify_binary_ops
(
"Sum"
,
x
,
y
,
x
+
y
,
broadcast
=
None
)
def
test_single_ops
():
in_shape
=
(
1
,
2
,
3
,
3
)
dtype
=
"float32"
out_shape
=
in_shape
def
verify_single_ops
(
op
,
x
,
out_np
):
z
=
helper
.
make_node
(
op
,
[
'in1'
],
[
'out'
])
graph
=
helper
.
make_graph
([
z
],
'_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in1"
,
TensorProto
.
FLOAT
,
list
(
in_shape
)),],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'_test'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
[
x
],
target
,
ctx
)
tvm
.
testing
.
assert_allclose
(
out_np
,
tvm_out
)
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
dtype
)
verify_single_ops
(
"Neg"
,
x
,
-
x
)
verify_single_ops
(
"Abs"
,
x
,
np
.
abs
(
x
))
verify_single_ops
(
"Reciprocal"
,
x
,
1
/
x
)
verify_single_ops
(
"Sqrt"
,
x
,
np
.
sqrt
(
x
))
verify_single_ops
(
"Relu"
,
x
,
np
.
maximum
(
x
,
0
))
verify_single_ops
(
"Exp"
,
x
,
np
.
exp
(
x
))
verify_single_ops
(
"Log"
,
x
,
np
.
log
(
x
))
verify_single_ops
(
"Log"
,
x
,
np
.
log
(
x
))
verify_single_ops
(
"Tanh"
,
x
,
np
.
tanh
(
x
))
verify_single_ops
(
"Sigmoid"
,
x
,
1
/
(
1
+
np
.
exp
(
-
x
)))
verify_single_ops
(
"Softsign"
,
x
,
x
/
(
1
+
np
.
abs
(
x
)))
verify_single_ops
(
"SoftPlus"
,
x
,
np
.
log
(
1
+
np
.
exp
(
x
)))
def
test_leaky_relu
():
def
leaky_relu_x
(
x
,
alpha
):
return
np
.
where
(
x
>=
0
,
x
,
x
*
alpha
)
_test_onnx_op_elementwise
((
2
,
4
,
5
,
6
),
leaky_relu_x
,
{
'alpha'
:
0.25
},
'float32'
,
'LeakyRelu'
,
{
'alpha'
:
0.25
})
def
test_elu
():
def
elu_x
(
x
,
alpha
):
return
np
.
where
(
x
>
0
,
x
,
alpha
*
(
np
.
exp
(
x
)
-
1.0
))
_test_onnx_op_elementwise
((
2
,
4
,
5
,
6
),
elu_x
,
{
'alpha'
:
0.25
},
'float32'
,
'Elu'
,
{
'alpha'
:
0.25
})
def
test_selu
():
def
selu_x
(
x
,
alpha
,
gamma
):
return
gamma
*
np
.
where
(
x
>
0
,
x
,
alpha
*
(
np
.
exp
(
x
)
-
1.0
))
_test_onnx_op_elementwise
((
2
,
4
,
5
,
6
),
selu_x
,
{
'alpha'
:
0.25
,
'gamma'
:
0.3
},
'float32'
,
'Selu'
,
{
'alpha'
:
0.25
,
'gamma'
:
0.3
})
def
test_ThresholdedRelu
():
def
ThresholdedRelu_x
(
x
,
alpha
):
out_np
=
np
.
clip
(
x
,
alpha
,
np
.
inf
)
out_np
[
out_np
==
alpha
]
=
0
return
out_np
_test_onnx_op_elementwise
((
2
,
4
,
5
,
6
),
ThresholdedRelu_x
,
{
'alpha'
:
0.25
},
'float32'
,
'ThresholdedRelu'
,
{
'alpha'
:
0.25
})
def
test_ScaledTanh
():
def
ScaledTanh_x
(
x
,
alpha
,
beta
):
return
alpha
*
np
.
tanh
(
beta
*
x
)
_test_onnx_op_elementwise
((
2
,
4
,
5
,
6
),
ScaledTanh_x
,
{
'alpha'
:
0.25
,
'beta'
:
0.3
},
'float32'
,
'ScaledTanh'
,
{
'alpha'
:
0.25
,
'beta'
:
0.3
})
def
test_ParametricSoftplus
():
def
ParametricSoftplus_x
(
x
,
alpha
,
beta
):
return
alpha
*
np
.
log
(
np
.
exp
(
beta
*
x
)
+
1
)
_test_onnx_op_elementwise
((
2
,
4
,
5
,
6
),
ParametricSoftplus_x
,
{
'alpha'
:
0.25
,
'beta'
:
0.3
},
'float32'
,
'ParametricSoftplus'
,
{
'alpha'
:
0.25
,
'beta'
:
0.3
})
def
test_Scale
():
def
Scale_x
(
x
,
scale
):
return
scale
*
x
_test_onnx_op_elementwise
((
2
,
4
,
5
,
6
),
Scale_x
,
{
'scale'
:
0.25
},
'float32'
,
'Scale'
,
{
'scale'
:
0.25
})
def
test_LogSoftmax
():
_test_onnx_op_elementwise
((
1
,
4
),
topi
.
testing
.
log_softmax_python
,
{},
'float32'
,
'LogSoftmax'
,
{
'axis'
:
1
})
if
__name__
==
'__main__'
:
# verify_super_resolution_example()
# verify_squeezenet1_1()
...
...
@@ -889,3 +1037,13 @@ if __name__ == '__main__':
test_reduce_sum
()
test_reduce_mean
()
test_split
()
test_binary_ops
()
test_single_ops
()
test_leaky_relu
()
test_elu
()
test_selu
()
test_ThresholdedRelu
()
test_ScaledTanh
()
test_ParametricSoftplus
()
test_Scale
()
test_LogSoftmax
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment