Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
32a55f88
Commit
32a55f88
authored
Jun 30, 2018
by
ANSHUMAN TRIPATHY
Committed by
Tianqi Chen
Jun 30, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Prelu bug fix (#1358)
parent
ab0d1862
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
12 additions
and
11 deletions
+12
-11
nnvm/src/top/nn/nn.cc
+1
-1
topi/include/topi/nn.h
+0
-1
topi/src/topi.cc
+1
-1
topi/tests/python/test_topi_relu.py
+5
-4
topi/tests/python_cpp/test_topi_relu.py
+5
-4
No files found.
nnvm/src/top/nn/nn.cc
View file @
32a55f88
...
@@ -563,7 +563,7 @@ where :math:`*` is an channelwise multiplication for each sample in the
...
@@ -563,7 +563,7 @@ where :math:`*` is an channelwise multiplication for each sample in the
const
Array
<
Tensor
>&
inputs
,
const
Array
<
Tensor
>&
inputs
,
const
Array
<
Tensor
>&
out_info
)
{
const
Array
<
Tensor
>&
out_info
)
{
const
PReLUParam
&
param
=
nnvm
::
get
<
PReLUParam
>
(
attrs
.
parsed
);
const
PReLUParam
&
param
=
nnvm
::
get
<
PReLUParam
>
(
attrs
.
parsed
);
return
Array
<
Tensor
>
{
topi
::
prelu
<
float
>
(
inputs
[
0
],
inputs
[
1
],
param
.
axis
)};
return
Array
<
Tensor
>
{
topi
::
prelu
(
inputs
[
0
],
inputs
[
1
],
param
.
axis
)};
})
})
.
set_support_level
(
4
);
.
set_support_level
(
4
);
...
...
topi/include/topi/nn.h
View file @
32a55f88
...
@@ -92,7 +92,6 @@ inline tvm::Tensor leaky_relu(const tvm::Tensor& t,
...
@@ -92,7 +92,6 @@ inline tvm::Tensor leaky_relu(const tvm::Tensor& t,
*
*
* \return A Tensor whose op member is the relu operation
* \return A Tensor whose op member is the relu operation
*/
*/
template
<
typename
T
>
inline
tvm
::
Tensor
prelu
(
const
tvm
::
Tensor
&
x
,
inline
tvm
::
Tensor
prelu
(
const
tvm
::
Tensor
&
x
,
const
tvm
::
Tensor
&
slope
,
const
tvm
::
Tensor
&
slope
,
const
int
axis
=
1
,
const
int
axis
=
1
,
...
...
topi/src/topi.cc
View file @
32a55f88
...
@@ -191,7 +191,7 @@ TVM_REGISTER_GLOBAL("topi.nn.leaky_relu")
...
@@ -191,7 +191,7 @@ TVM_REGISTER_GLOBAL("topi.nn.leaky_relu")
TVM_REGISTER_GLOBAL
(
"topi.nn.prelu"
)
TVM_REGISTER_GLOBAL
(
"topi.nn.prelu"
)
.
set_body
([](
TVMArgs
args
,
TVMRetValue
*
rv
)
{
.
set_body
([](
TVMArgs
args
,
TVMRetValue
*
rv
)
{
*
rv
=
prelu
<
float
>
(
args
[
0
],
args
[
1
]);
*
rv
=
prelu
(
args
[
0
],
args
[
1
],
args
[
2
]);
});
});
TVM_REGISTER_GLOBAL
(
"topi.nn.pad"
)
TVM_REGISTER_GLOBAL
(
"topi.nn.pad"
)
...
...
topi/tests/python/test_topi_relu.py
View file @
32a55f88
...
@@ -46,16 +46,16 @@ def verify_leaky_relu(m, alpha):
...
@@ -46,16 +46,16 @@ def verify_leaky_relu(m, alpha):
np
.
testing
.
assert_allclose
(
b
.
asnumpy
(),
b_np
,
rtol
=
1e-5
)
np
.
testing
.
assert_allclose
(
b
.
asnumpy
(),
b_np
,
rtol
=
1e-5
)
def
verify_prelu
(
x
,
w
):
def
verify_prelu
(
x
,
w
,
axis
,
weight_reshape
):
X
=
tvm
.
placeholder
((
x
),
name
=
'X'
)
X
=
tvm
.
placeholder
((
x
),
name
=
'X'
)
W
=
tvm
.
placeholder
((
w
),
name
=
'W'
)
W
=
tvm
.
placeholder
((
w
),
name
=
'W'
)
x_np
=
np
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
get_const_tuple
(
X
.
shape
))
.
astype
(
X
.
dtype
)
x_np
=
np
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
get_const_tuple
(
X
.
shape
))
.
astype
(
X
.
dtype
)
w_np
=
np
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
get_const_tuple
(
W
.
shape
))
.
astype
(
W
.
dtype
)
w_np
=
np
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
get_const_tuple
(
W
.
shape
))
.
astype
(
W
.
dtype
)
def
_prelu_numpy
(
x
,
W
):
def
_prelu_numpy
(
x
,
W
):
return
(
x
<
0
)
*
(
x
*
W
.
reshape
(
3
,
1
,
1
))
+
(
x
>=
0
)
*
x
return
(
x
<
0
)
*
(
x
*
W
.
reshape
(
weight_reshape
))
+
(
x
>=
0
)
*
x
B
=
topi
.
nn
.
prelu
(
X
,
W
)
B
=
topi
.
nn
.
prelu
(
X
,
W
,
axis
)
s
=
tvm
.
create_schedule
([
B
.
op
])
s
=
tvm
.
create_schedule
([
B
.
op
])
ctx
=
tvm
.
cpu
(
0
)
ctx
=
tvm
.
cpu
(
0
)
...
@@ -79,7 +79,8 @@ def test_leaky_relu():
...
@@ -79,7 +79,8 @@ def test_leaky_relu():
verify_leaky_relu
(
100
,
0.1
)
verify_leaky_relu
(
100
,
0.1
)
def
test_prelu
():
def
test_prelu
():
verify_prelu
((
1
,
3
,
2
,
2
),
(
3
,))
verify_prelu
((
1
,
3
,
2
,
2
),
(
3
,),
1
,
(
3
,
1
,
1
))
verify_prelu
((
1
,
3
,
2
,
2
),
(
2
,),
2
,
(
2
,
1
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
test_schedule_big_array
()
test_schedule_big_array
()
...
...
topi/tests/python_cpp/test_topi_relu.py
View file @
32a55f88
...
@@ -50,16 +50,16 @@ def verify_leaky_relu(m, alpha):
...
@@ -50,16 +50,16 @@ def verify_leaky_relu(m, alpha):
foo
(
a
,
b
)
foo
(
a
,
b
)
np
.
testing
.
assert_allclose
(
b
.
asnumpy
(),
b_np
,
rtol
=
1e-5
)
np
.
testing
.
assert_allclose
(
b
.
asnumpy
(),
b_np
,
rtol
=
1e-5
)
def
verify_prelu
(
x
,
w
):
def
verify_prelu
(
x
,
w
,
axis
,
weight_reshape
):
X
=
tvm
.
placeholder
((
x
),
name
=
'X'
)
X
=
tvm
.
placeholder
((
x
),
name
=
'X'
)
W
=
tvm
.
placeholder
((
w
),
name
=
'W'
)
W
=
tvm
.
placeholder
((
w
),
name
=
'W'
)
x_np
=
np
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
get_const_tuple
(
X
.
shape
))
.
astype
(
X
.
dtype
)
x_np
=
np
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
get_const_tuple
(
X
.
shape
))
.
astype
(
X
.
dtype
)
w_np
=
np
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
get_const_tuple
(
W
.
shape
))
.
astype
(
W
.
dtype
)
w_np
=
np
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
get_const_tuple
(
W
.
shape
))
.
astype
(
W
.
dtype
)
def
_prelu_numpy
(
x
,
W
):
def
_prelu_numpy
(
x
,
W
):
return
(
x
<
0
)
*
(
x
*
W
.
reshape
(
3
,
1
,
1
))
+
(
x
>=
0
)
*
x
return
(
x
<
0
)
*
(
x
*
W
.
reshape
(
weight_reshape
))
+
(
x
>=
0
)
*
x
out_np
=
_prelu_numpy
(
x_np
,
w_np
)
out_np
=
_prelu_numpy
(
x_np
,
w_np
)
B
=
topi
.
cpp
.
nn
.
prelu
(
X
,
W
)
B
=
topi
.
cpp
.
nn
.
prelu
(
X
,
W
,
axis
)
device
=
"llvm"
device
=
"llvm"
target
=
topi
.
cpp
.
TEST_create_target
(
device
)
target
=
topi
.
cpp
.
TEST_create_target
(
device
)
s
=
topi
.
cpp
.
generic
.
schedule_injective
(
target
,
[
B
])
s
=
topi
.
cpp
.
generic
.
schedule_injective
(
target
,
[
B
])
...
@@ -81,7 +81,8 @@ def test_leaky_relu():
...
@@ -81,7 +81,8 @@ def test_leaky_relu():
verify_leaky_relu
(
100
,
0.5
)
verify_leaky_relu
(
100
,
0.5
)
def
test_prelu
():
def
test_prelu
():
verify_prelu
((
1
,
3
,
2
,
2
),
(
3
,))
verify_prelu
((
1
,
3
,
2
,
2
),
(
3
,),
1
,
(
3
,
1
,
1
))
verify_prelu
((
1
,
3
,
2
,
2
),
(
2
,),
2
,
(
2
,
1
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
test_relu
()
test_relu
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment