Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
327891cb
Unverified
Commit
327891cb
authored
Mar 13, 2020
by
anwang2009
Committed by
GitHub
Mar 13, 2020
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay][Pass] Add submodule extraction pass (#4960)
* rebased * fix lint
parent
2e913f0b
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
219 additions
and
0 deletions
+219
-0
python/tvm/relay/analysis.py
+22
-0
src/relay/analysis/extract_fused_functions.cc
+82
-0
tests/python/relay/test_analysis_extract_fused_functions.py
+115
-0
No files found.
python/tvm/relay/analysis.py
View file @
327891cb
...
...
@@ -407,3 +407,25 @@ def structural_hash(value):
msg
=
(
"found value of type {0} expected"
+
"relay.Expr or relay.Type"
)
.
format
(
type
(
value
))
raise
TypeError
(
msg
)
def
extract_fused_functions
(
mod
):
"""Pass to extract IRModule of only fused primitive functions.
The ExtractFusedFunctions pass invokes SimplifyInference, FuseOps(3),
and ExtractFusedFunctions in that order
Parameters
----------
mod : tvm.relay.IRModule
Returns
-------
ret : Dict[int, tvm.relay.expr.Function]
A module containing only fused primitive functions
"""
ret_mod
=
_analysis
.
ExtractFusedFunctions
()(
mod
)
ret
=
{}
for
hash_
,
func
in
ret_mod
.
functions
.
items
():
ret
[
hash_
]
=
func
return
ret
src/relay/analysis/extract_fused_functions.cc
0 → 100644
View file @
327891cb
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file extract_fused_functions.cc
* \brief Apply fusion and extract fused primitive functions from an IRModule
*/
#include <tvm/relay/analysis.h>
#include <tvm/relay/expr.h>
#include <tvm/relay/expr_functor.h>
#include <tvm/relay/transform.h>
namespace
tvm
{
namespace
relay
{
class
FusedFunctionExtractorWrapper
:
private
ExprVisitor
{
public
:
explicit
FusedFunctionExtractorWrapper
(
const
IRModule
&
mod
)
:
mod_
(
mod
)
{}
IRModule
Extract
()
{
VisitExpr
(
this
->
mod_
->
Lookup
(
"main"
));
auto
functions
=
Map
<
GlobalVar
,
BaseFunc
>
();
for
(
auto
pair
:
this
->
functions
)
{
functions
.
Set
(
GlobalVar
(
pair
.
first
),
pair
.
second
);
}
this
->
mod_
->
functions
=
functions
;
return
this
->
mod_
;
}
private
:
const
IRModule
mod_
;
// This is not simply Map<GlobalVar, Function> because GlobalVar doesn't
// have the desired equals property
Map
<
std
::
string
,
Function
>
functions
;
void
VisitExpr_
(
const
FunctionNode
*
n
)
final
{
if
(
n
->
HasNonzeroAttr
(
attr
::
kPrimitive
))
{
// Add function to functions, keyed by function hash string
Function
func
=
Function
(
n
->
params
,
n
->
body
,
n
->
ret_type
,
n
->
type_params
,
n
->
attrs
);
size_t
hash_
=
StructuralHash
()(
func
);
this
->
functions
.
Set
(
std
::
to_string
(
hash_
),
func
);
}
ExprVisitor
::
VisitExpr_
(
n
);
}
};
namespace
transform
{
Pass
ExtractFusedFunctions
()
{
runtime
::
TypedPackedFunc
<
IRModule
(
IRModule
,
PassContext
)
>
pass_func
=
[
=
](
IRModule
m
,
PassContext
pc
)
{
return
FusedFunctionExtractorWrapper
(
m
).
Extract
();
};
auto
fused_function_extractor_pass
=
CreateModulePass
(
pass_func
,
1
,
"ExtractFusedFunctions"
,
{});
return
Sequential
({
SimplifyInference
(),
FuseOps
(
3
),
fused_function_extractor_pass
},
"ExtractFusedFunctions"
);
}
TVM_REGISTER_GLOBAL
(
"relay._analysis.ExtractFusedFunctions"
).
set_body_typed
(
ExtractFusedFunctions
);
}
// namespace transform
}
// namespace relay
}
// namespace tvm
tests/python/relay/test_analysis_extract_fused_functions.py
0 → 100644
View file @
327891cb
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Test function extraction"""
import
tvm
from
tvm
import
relay
from
tvm.relay.testing.resnet
import
get_workload
def
get_conv_net
():
"""This gets the net for a case described in fuse_ops.cc:
conv2d
/ |
\
/ |
\
op op op
\
| /
\
| /
elemwise add
|
"""
dshape
=
(
1
,
1
,
5
,
1
)
x
=
relay
.
var
(
"x"
,
shape
=
dshape
)
y
=
relay
.
nn
.
conv2d
(
x
,
relay
.
var
(
"w1"
),
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
channels
=
1
)
x1
=
relay
.
nn
.
conv2d
(
y
,
relay
.
var
(
"w2"
),
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
channels
=
1
)
x2
=
relay
.
nn
.
conv2d
(
y
,
relay
.
var
(
"w3"
),
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
channels
=
1
)
x3
=
relay
.
nn
.
conv2d
(
y
,
relay
.
var
(
"w4"
),
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
channels
=
1
)
z
=
relay
.
add
(
x1
,
x2
)
z
=
relay
.
add
(
x3
,
z
)
return
tvm
.
IRModule
.
from_expr
(
z
)
def
get_conv2d
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
56
,
56
,
64
))
weight1
=
relay
.
var
(
'weight1'
,
shape
=
(
3
,
3
,
64
,
32
))
y
=
relay
.
nn
.
conv2d
(
x
,
weight1
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
data_layout
=
'NHWC'
,
kernel_layout
=
'HWIO'
)
return
tvm
.
IRModule
.
from_expr
(
y
)
def
test_extract_identity
():
mod
=
get_conv2d
()
items
=
relay
.
analysis
.
extract_fused_functions
(
mod
)
assert
len
(
items
)
==
1
mod
[
"main"
]
=
mod
[
"main"
]
.
with_attr
(
"Primitive"
,
tvm
.
tir
.
IntImm
(
"int32"
,
1
))
relay
.
analysis
.
assert_graph_equal
(
list
(
items
.
values
())[
0
],
mod
[
"main"
])
def
test_extract_conv_net
():
mod
=
get_conv_net
()
items
=
relay
.
analysis
.
extract_fused_functions
(
mod
)
functions
=
list
(
items
.
values
())
assert
len
(
functions
)
==
2
x
=
functions
[
0
]
y
=
functions
[
1
]
def
is_conv
(
func
):
conv2d
=
relay
.
op
.
op
.
get
(
"nn.conv2d"
)
call_node
=
func
.
body
return
call_node
.
op
==
conv2d
def
is_conv_add
(
func
):
add
=
relay
.
op
.
op
.
get
(
"add"
)
call_node
=
func
.
body
maybe_conv_module
=
tvm
.
IRModule
.
from_expr
(
call_node
.
args
[
0
])
return
call_node
.
op
==
add
and
is_conv
(
maybe_conv_module
[
"main"
])
# Function traversal order isn't obvious, so checking both orders is more consistent
assert
(
is_conv
(
x
)
and
is_conv_add
(
y
))
or
(
is_conv_add
(
x
)
and
is_conv
(
y
))
def
test_extract_resnet
():
mod
,
_params
=
get_workload
()
items
=
relay
.
analysis
.
extract_fused_functions
(
mod
)
assert
len
(
items
)
==
34
if
__name__
==
'__main__'
:
test_extract_identity
()
test_extract_conv_net
()
test_extract_resnet
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment