Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
31eb2c5a
Commit
31eb2c5a
authored
Sep 11, 2017
by
Eric Junyuan Xie
Committed by
Tianqi Chen
May 29, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add level2 ops (#6)
parent
e2ae388a
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
369 additions
and
9 deletions
+369
-9
nnvm/include/nnvm/top/nn.h
+153
-0
nnvm/src/top/nn.cc
+216
-9
No files found.
nnvm/include/nnvm/top/nn.h
View file @
31eb2c5a
...
...
@@ -12,6 +12,20 @@
namespace
nnvm
{
namespace
top
{
enum
LayoutFlag
{
kNCHW
=
0
,
kNHWC
,
kCHWN
,
kNCW
=
1
<<
3
,
kNWC
,
kCWN
,
kNCDHW
=
1
<<
5
,
kNDHWC
,
kCDHWN
};
struct
DenseParam
:
public
dmlc
::
Parameter
<
DenseParam
>
{
int
units
;
bool
use_bias
;
...
...
@@ -85,6 +99,145 @@ struct LogSoftmaxParam : public dmlc::Parameter<LogSoftmaxParam> {
}
};
struct
Conv2DParam
:
public
dmlc
::
Parameter
<
Conv2DParam
>
{
int
channels
;
TShape
kernel_size
;
TShape
strides
;
TShape
padding
;
TShape
dilation
;
int
groups
;
int
layout
;
bool
use_bias
;
DMLC_DECLARE_PARAMETER
(
Conv2DParam
)
{
DMLC_DECLARE_FIELD
(
channels
)
.
describe
(
"The dimensionality of the output space"
"i.e. the number of output channels in the convolution."
);
DMLC_DECLARE_FIELD
(
kernel_size
)
.
describe
(
"Specifies the dimensions of the convolution window."
);
DMLC_DECLARE_FIELD
(
strides
).
set_default
(
TShape
({
1
,
1
}))
.
describe
(
"Specifies the strides of the convolution."
);
DMLC_DECLARE_FIELD
(
padding
).
set_default
(
TShape
({
0
,
0
}))
.
describe
(
"If padding is non-zero, then the input is implicitly zero-padded"
"on both sides for padding number of points"
);
DMLC_DECLARE_FIELD
(
dilation
).
set_default
(
TShape
({
1
,
1
}))
.
describe
(
"Specifies the dilation rate to use for dilated convolution."
);
DMLC_DECLARE_FIELD
(
groups
).
set_default
(
1
)
.
describe
(
"Controls the connections between inputs and outputs."
"At groups=1, all inputs are convolved to all outputs."
"At groups=2, the operation becomes equivalent to having two convolution"
"layers side by side, each seeing half the input channels, and producing"
"half the output channels, and both subsequently concatenated."
);
DMLC_DECLARE_FIELD
(
layout
)
.
add_enum
(
"NCHW"
,
kNCHW
)
.
add_enum
(
"NHWC"
,
kNHWC
)
.
set_default
(
kNCHW
)
.
describe
(
"Dimension ordering of data and weight. Can be 'NCHW', 'NHWC', etc."
"'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
"dimensions respectively. Convolution is applied on the 'H' and"
"'W' dimensions."
);
DMLC_DECLARE_FIELD
(
use_bias
).
set_default
(
true
)
.
describe
(
"Whether the layer uses a bias vector."
);
}
};
struct
Conv2DTransposeParam
:
public
dmlc
::
Parameter
<
Conv2DTransposeParam
>
{
int
channels
;
TShape
kernel_size
;
TShape
strides
;
TShape
padding
;
TShape
output_padding
;
TShape
dilation
;
int
groups
;
int
layout
;
bool
use_bias
;
DMLC_DECLARE_PARAMETER
(
Conv2DTransposeParam
)
{
DMLC_DECLARE_FIELD
(
channels
)
.
describe
(
"The dimensionality of the output space"
"i.e. the number of output channels in the convolution."
);
DMLC_DECLARE_FIELD
(
kernel_size
)
.
describe
(
"Specifies the dimensions of the convolution window."
);
DMLC_DECLARE_FIELD
(
strides
).
set_default
(
TShape
({
1
,
1
}))
.
describe
(
"Specifies the strides of the convolution."
);
DMLC_DECLARE_FIELD
(
output_padding
).
set_default
(
TShape
({
0
,
0
}))
.
describe
(
"Zero-padding added to one side of the output."
);
DMLC_DECLARE_FIELD
(
padding
).
set_default
(
TShape
({
0
,
0
}))
.
describe
(
"If padding is non-zero, then the input is implicitly zero-padded"
"on both sides for padding number of points"
);
DMLC_DECLARE_FIELD
(
dilation
).
set_default
(
TShape
({
1
,
1
}))
.
describe
(
"Specifies the dilation rate to use for dilated convolution."
);
DMLC_DECLARE_FIELD
(
groups
).
set_default
(
1
)
.
describe
(
"Controls the connections between inputs and outputs."
"At groups=1, all inputs are convolved to all outputs."
"At groups=2, the operation becomes equivalent to having two convolution"
"layers side by side, each seeing half the input channels, and producing"
"half the output channels, and both subsequently concatenated."
);
DMLC_DECLARE_FIELD
(
layout
)
.
add_enum
(
"NCHW"
,
kNCHW
)
.
add_enum
(
"NHWC"
,
kNHWC
)
.
set_default
(
kNCHW
)
.
describe
(
"Dimension ordering of data and weight. Can be 'NCHW', 'NHWC', etc."
"'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
"dimensions respectively. Convolution is applied on the 'H' and"
"'W' dimensions."
);
DMLC_DECLARE_FIELD
(
use_bias
).
set_default
(
true
)
.
describe
(
"Whether the layer uses a bias vector."
);
}
};
struct
Pool2DParam
:
public
dmlc
::
Parameter
<
Pool2DParam
>
{
TShape
pool_size
;
TShape
strides
;
TShape
padding
;
int
groups
;
int
layout
;
bool
ceil_mode
;
DMLC_DECLARE_PARAMETER
(
Pool2DParam
)
{
DMLC_DECLARE_FIELD
(
pool_size
)
.
describe
(
"Size of the pooling windows.."
);
DMLC_DECLARE_FIELD
(
strides
).
set_default
(
TShape
({
1
,
1
}))
.
describe
(
"Specifies the strides of the convolution."
);
DMLC_DECLARE_FIELD
(
padding
).
set_default
(
TShape
({
0
,
0
}))
.
describe
(
"If padding is non-zero, then the input is implicitly zero-padded"
"on both sides for padding number of points"
);
DMLC_DECLARE_FIELD
(
groups
).
set_default
(
1
)
.
describe
(
"Controls the connections between inputs and outputs."
"At groups=1, all inputs are convolved to all outputs."
"At groups=2, the operation becomes equivalent to having two convolution"
"layers side by side, each seeing half the input channels, and producing"
"half the output channels, and both subsequently concatenated."
);
DMLC_DECLARE_FIELD
(
layout
)
.
add_enum
(
"NCHW"
,
kNCHW
)
.
add_enum
(
"NHWC"
,
kNHWC
)
.
set_default
(
kNCHW
)
.
describe
(
"Dimension ordering of data and weight. Can be 'NCHW', 'NHWC', etc."
"'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
"dimensions respectively. Convolution is applied on the 'H' and"
"'W' dimensions."
);
DMLC_DECLARE_FIELD
(
ceil_mode
).
set_default
(
false
)
.
describe
(
"When true, will use ceil instead of floor to compute the output shape."
);
}
};
struct
GlobalPool2DParam
:
public
dmlc
::
Parameter
<
GlobalPool2DParam
>
{
int
layout
;
DMLC_DECLARE_PARAMETER
(
GlobalPool2DParam
)
{
DMLC_DECLARE_FIELD
(
layout
)
.
add_enum
(
"NCHW"
,
kNCHW
)
.
add_enum
(
"NHWC"
,
kNHWC
)
.
set_default
(
kNCHW
)
.
describe
(
"Dimension ordering of data and weight. Can be 'NCHW', 'NHWC', etc."
"'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
"dimensions respectively. Convolution is applied on the 'H' and"
"'W' dimensions."
);
}
};
}
// namespace top
}
// namespace nnvm
...
...
nnvm/src/top/nn.cc
View file @
31eb2c5a
...
...
@@ -16,8 +16,9 @@ namespace top {
// dense
DMLC_REGISTER_PARAMETER
(
DenseParam
);
inline
std
::
vector
<
std
::
string
>
DenseListInputNames
(
const
NodeAttrs
&
attrs
)
{
const
DenseParam
&
param
=
nnvm
::
get
<
DenseParam
>
(
attrs
.
parsed
);
template
<
typename
ParamType
>
inline
std
::
vector
<
std
::
string
>
UseBiasListInputNames
(
const
NodeAttrs
&
attrs
)
{
const
ParamType
&
param
=
nnvm
::
get
<
ParamType
>
(
attrs
.
parsed
);
if
(
param
.
use_bias
)
{
return
{
"data"
,
"weight"
,
"bias"
};
}
else
{
...
...
@@ -25,6 +26,12 @@ inline std::vector<std::string> DenseListInputNames(const NodeAttrs& attrs) {
}
}
template
<
typename
ParamType
>
inline
uint32_t
UseBiasNumInputs
(
const
NodeAttrs
&
attrs
)
{
const
ParamType
&
param
=
get
<
ParamType
>
(
attrs
.
parsed
);
return
param
.
use_bias
?
3
:
2
;
}
inline
bool
DenseInferShape
(
const
nnvm
::
NodeAttrs
&
attrs
,
std
::
vector
<
TShape
>
*
in_shape
,
std
::
vector
<
TShape
>
*
out_shape
)
{
...
...
@@ -35,8 +42,8 @@ inline bool DenseInferShape(const nnvm::NodeAttrs& attrs,
CHECK_EQ
(
in_shape
->
size
(),
2U
)
<<
"Input:[data, weight]"
;
}
CHECK_EQ
(
out_shape
->
size
(),
1U
);
// reverse infer
if
((
*
out_shape
)[
0
].
ndim
()
!=
0
)
{
// reverse infer
TShape
dshape
=
(
*
out_shape
)[
0
];
dshape
[
dshape
.
ndim
()
-
1
]
=
0
;
NNVM_ASSIGN_INPUT_SHAPE
(
attrs
,
*
in_shape
,
DenseParam
::
kData
,
dshape
);
...
...
@@ -57,7 +64,7 @@ inline bool DenseInferShape(const nnvm::NodeAttrs& attrs,
}
NNVM_REGISTER_OP
(
dense
)
.
NNVM_DESCRIBE
(
R"code(Applies a linear transformation: :math:`Y = XW^T + b`.
.
describe
(
R"code(Applies a linear transformation: :math:`Y = XW^T + b`.
- **data**: `(x1, x2, ..., xn, input_dim)`
- **weight**: `(units, input_dim)`
...
...
@@ -75,11 +82,8 @@ If ``use_bias`` is set to be false, then the ``bias`` term is ignored.
.
add_arguments
(
DenseParam
::
__FIELDS__
())
.
set_attr_parser
(
ParamParser
<
DenseParam
>
)
.
set_num_outputs
(
1
)
.
set_num_inputs
([](
const
NodeAttrs
&
attrs
)
{
const
DenseParam
&
param
=
get
<
DenseParam
>
(
attrs
.
parsed
);
return
param
.
use_bias
?
3
:
2
;
})
.
set_attr
<
FListInputNames
>
(
"FListInputNames"
,
DenseListInputNames
)
.
set_num_inputs
(
UseBiasNumInputs
<
DenseParam
>
)
.
set_attr
<
FListInputNames
>
(
"FListInputNames"
,
UseBiasListInputNames
<
DenseParam
>
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
DenseInferShape
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<-
1
,
1
>
)
.
set_support_level
(
1
);
...
...
@@ -209,5 +213,208 @@ NNVM_REGISTER_OP(log_softmax)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
1
,
1
>
)
.
set_support_level
(
1
);
DMLC_REGISTER_PARAMETER
(
Conv2DParam
);
inline
bool
Conv2DInferShape
(
const
nnvm
::
NodeAttrs
&
attrs
,
std
::
vector
<
TShape
>
*
in_shape
,
std
::
vector
<
TShape
>
*
out_shape
)
{
const
Conv2DParam
&
param
=
nnvm
::
get
<
Conv2DParam
>
(
attrs
.
parsed
);
if
(
param
.
use_bias
)
{
CHECK_EQ
(
in_shape
->
size
(),
3U
)
<<
"Input:[data, weight, bias]"
;
}
else
{
CHECK_EQ
(
in_shape
->
size
(),
2U
)
<<
"Input:[data, weight]"
;
}
CHECK_EQ
(
out_shape
->
size
(),
1U
);
return
true
;
}
NNVM_REGISTER_OP
(
conv2d
)
.
describe
(
R"code(2D convolution layer (e.g. spatial convolution over images).
This layer creates a convolution kernel that is convolved
with the layer input to produce a tensor of
outputs. If `use_bias` is True,
a bias vector is created and added to the outputs.
- **data**: This depends on the `layout` parameter. Input is 4D array of shape
(batch_size, in_channels, height, width) if `layout` is `NCHW`.
- **weight**: (channels, in_channels, kernel_size[0], kernel_size[1])
- **bias**: (channels,)
- **out**: This depends on the `layout` parameter. Output is 4D array of shape
(batch_size, channels, out_height, out_width) if `layout` is `NCHW`.
)code"
NNVM_ADD_FILELINE
)
.
add_argument
(
"data"
,
"4D Tensor"
,
"Input data."
)
.
add_argument
(
"weight"
,
"4D Tensor"
,
"Weight matrix."
)
.
add_argument
(
"bias"
,
"1D Tensor"
,
"Bias parameter."
)
.
add_arguments
(
Conv2DParam
::
__FIELDS__
())
.
set_attr_parser
(
ParamParser
<
Conv2DParam
>
)
.
set_num_outputs
(
1
)
.
set_num_inputs
(
UseBiasNumInputs
<
Conv2DParam
>
)
.
set_attr
<
FListInputNames
>
(
"FListInputNames"
,
UseBiasListInputNames
<
Conv2DParam
>
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
Conv2DInferShape
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<-
1
,
1
>
)
.
set_support_level
(
2
);
DMLC_REGISTER_PARAMETER
(
Conv2DTransposeParam
);
inline
bool
Conv2DTransposeInferShape
(
const
nnvm
::
NodeAttrs
&
attrs
,
std
::
vector
<
TShape
>
*
in_shape
,
std
::
vector
<
TShape
>
*
out_shape
)
{
const
Conv2DTransposeParam
&
param
=
nnvm
::
get
<
Conv2DTransposeParam
>
(
attrs
.
parsed
);
if
(
param
.
use_bias
)
{
CHECK_EQ
(
in_shape
->
size
(),
3U
)
<<
"Input:[data, weight, bias]"
;
}
else
{
CHECK_EQ
(
in_shape
->
size
(),
2U
)
<<
"Input:[data, weight]"
;
}
CHECK_EQ
(
out_shape
->
size
(),
1U
);
return
true
;
}
NNVM_REGISTER_OP
(
conv2d_transpose
)
.
describe
(
R"code(Transposed 2D convolution layer (sometimes called Deconvolution).
The need for transposed convolutions generally arises
from the desire to use a transformation going in the opposite direction
of a normal convolution, i.e., from something that has the shape of the
output of some convolution to something that has the shape of its input
while maintaining a connectivity pattern that is compatible with
said convolution.
- **data**: This depends on the `layout` parameter. Input is 4D array of shape
(batch_size, in_channels, height, width) if `layout` is `NCHW`.
- **weight**: (channels, in_channels, kernel_size[0], kernel_size[1])
- **bias**: (channels,)
- **out**: This depends on the `layout` parameter. Output is 4D array of shape
(batch_size, channels, out_height, out_width) if `layout` is `NCHW`.
out_height and out_width are calculated as::
out_height = (height-1)*strides[0]-2*padding[0]+kernel_size[0]+output_padding[0]
out_width = (width-1)*strides[1]-2*padding[1]+kernel_size[1]+output_padding[1]
)code"
NNVM_ADD_FILELINE
)
.
add_argument
(
"data"
,
"4D Tensor"
,
"Input data."
)
.
add_argument
(
"weight"
,
"4D Tensor"
,
"Weight matrix."
)
.
add_argument
(
"bias"
,
"1D Tensor"
,
"Bias parameter."
)
.
add_arguments
(
Conv2DTransposeParam
::
__FIELDS__
())
.
set_attr_parser
(
ParamParser
<
Conv2DTransposeParam
>
)
.
set_num_outputs
(
1
)
.
set_num_inputs
(
UseBiasNumInputs
<
Conv2DTransposeParam
>
)
.
set_attr
<
FListInputNames
>
(
"FListInputNames"
,
UseBiasListInputNames
<
Conv2DTransposeParam
>
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
Conv2DTransposeInferShape
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<-
1
,
1
>
)
.
set_support_level
(
2
);
DMLC_REGISTER_PARAMETER
(
Pool2DParam
);
inline
bool
Pool2DInferShape
(
const
nnvm
::
NodeAttrs
&
attrs
,
std
::
vector
<
TShape
>
*
in_shape
,
std
::
vector
<
TShape
>
*
out_shape
)
{
const
Pool2DParam
&
param
=
nnvm
::
get
<
Pool2DParam
>
(
attrs
.
parsed
);
CHECK_EQ
(
in_shape
->
size
(),
1U
);
CHECK_EQ
(
out_shape
->
size
(),
1U
);
return
true
;
}
NNVM_REGISTER_OP
(
max_pool2d
)
.
describe
(
R"code(Max pooling operation for one dimensional data.
- **data**: This depends on the `layout` parameter. Input is 4D array of shape
(batch_size, channels, height, width) if `layout` is `NCHW`.
- **out**: This depends on the `layout` parameter. Output is 4D array of shape
(batch_size, channels, out_height, out_width) if `layout` is `NCHW`.
out_height and out_width are calculated as::
out_height = floor((height+2*padding[0]-pool_size[0])/strides[0])+1
out_width = floor((width+2*padding[1]-pool_size[1])/strides[1])+1
When `ceil_mode` is `True`, ceil will be used instead of floor in this
equation.
)code"
NNVM_ADD_FILELINE
)
.
add_argument
(
"data"
,
"4D Tensor"
,
"Input data."
)
.
add_arguments
(
Pool2DParam
::
__FIELDS__
())
.
set_attr_parser
(
ParamParser
<
Pool2DParam
>
)
.
set_num_outputs
(
1
)
.
set_num_inputs
(
1
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
Pool2DInferShape
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
1
,
1
>
)
.
set_support_level
(
2
);
NNVM_REGISTER_OP
(
avg_pool2d
)
.
describe
(
R"code(Average pooling operation for one dimensional data.
- **data**: This depends on the `layout` parameter. Input is 4D array of shape
(batch_size, channels, height, width) if `layout` is `NCHW`.
- **out**: This depends on the `layout` parameter. Output is 4D array of shape
(batch_size, channels, out_height, out_width) if `layout` is `NCHW`.
out_height and out_width are calculated as::
out_height = floor((height+2*padding[0]-pool_size[0])/strides[0])+1
out_width = floor((width+2*padding[1]-pool_size[1])/strides[1])+1
When `ceil_mode` is `True`, ceil will be used instead of floor in this
equation.
)code"
NNVM_ADD_FILELINE
)
.
add_argument
(
"data"
,
"4D Tensor"
,
"Input data."
)
.
add_arguments
(
Pool2DParam
::
__FIELDS__
())
.
set_attr_parser
(
ParamParser
<
Pool2DParam
>
)
.
set_num_outputs
(
1
)
.
set_num_inputs
(
1
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
Pool2DInferShape
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
1
,
1
>
)
.
set_support_level
(
2
);
DMLC_REGISTER_PARAMETER
(
GlobalPool2DParam
);
inline
bool
GlobalPool2DInferShape
(
const
nnvm
::
NodeAttrs
&
attrs
,
std
::
vector
<
TShape
>
*
in_shape
,
std
::
vector
<
TShape
>
*
out_shape
)
{
const
GlobalPool2DParam
&
param
=
nnvm
::
get
<
GlobalPool2DParam
>
(
attrs
.
parsed
);
CHECK_EQ
(
in_shape
->
size
(),
1U
);
CHECK_EQ
(
out_shape
->
size
(),
1U
);
return
true
;
}
NNVM_REGISTER_OP
(
global_max_pool2d
)
.
describe
(
R"code(Global max pooling operation for 2D data.
- **data**: This depends on the `layout` parameter. Input is 4D array of shape
(batch_size, channels, height, width) if `layout` is `NCHW`.
- **out**: This depends on the `layout` parameter. Output is 4D array of shape
(batch_size, channels, 1, 1) if `layout` is `NCHW`.
)code"
NNVM_ADD_FILELINE
)
.
add_argument
(
"data"
,
"4D Tensor"
,
"Input data."
)
.
add_arguments
(
GlobalPool2DParam
::
__FIELDS__
())
.
set_attr_parser
(
ParamParser
<
GlobalPool2DParam
>
)
.
set_num_outputs
(
1
)
.
set_num_inputs
(
1
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
GlobalPool2DInferShape
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
1
,
1
>
)
.
set_support_level
(
2
);
NNVM_REGISTER_OP
(
global_avg_pool2d
)
.
describe
(
R"code(Global average pooling operation for 2D data.
- **data**: This depends on the `layout` parameter. Input is 4D array of shape
(batch_size, channels, height, width) if `layout` is `NCHW`.
- **out**: This depends on the `layout` parameter. Output is 4D array of shape
(batch_size, channels, 1, 1) if `layout` is `NCHW`.
)code"
NNVM_ADD_FILELINE
)
.
add_argument
(
"data"
,
"4D Tensor"
,
"Input data."
)
.
add_arguments
(
GlobalPool2DParam
::
__FIELDS__
())
.
set_attr_parser
(
ParamParser
<
GlobalPool2DParam
>
)
.
set_num_outputs
(
1
)
.
set_num_inputs
(
1
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
GlobalPool2DInferShape
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
1
,
1
>
)
.
set_support_level
(
2
);
}
// namespace top
}
// namespace nnvm
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment